Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119643102> ?p ?o ?g. }
- W3119643102 endingPage "2282" @default.
- W3119643102 startingPage "2265" @default.
- W3119643102 abstract "COVID-19 is a pandemic that has affected nearly every country in the world. At present, sustainable development in the area of public health is considered vital to securing a promising and prosperous future for humans. However, widespread diseases, such as COVID-19, create numerous challenges to this goal, and some of those challenges are not yet defined. In this study, a Shallow Single-Layer Perceptron Neural Network (SSLPNN) and Gaussian Process Regression (GPR) model were used for the classification and prediction of confirmed COVID-19 cases in five geographically distributed regions of Asia with diverse settings and environmental conditions: namely, China, South Korea, Japan, Saudi Arabia, and Pakistan. Significant environmental and non-environmental features were taken as the input dataset, and confirmed COVID-19 cases were taken as the output dataset. A correlation analysis was done to identify patterns in the cases related to fluctuations in the associated variables. The results of this study established that the population and air quality index of a region had a statistically significant influence on the cases. However, age and the human development index had a negative influence on the cases. The proposed SSLPNN-based classification model performed well when predicting the classes of confirmed cases. During training, the binary classification model was highly accurate, with a Root Mean Square Error (RMSE) of 0.91. Likewise, the results of the regression analysis using the GPR technique with Matern 5/2 were highly accurate (RMSE = 0.95239) when predicting the number of confirmed COVID-19 cases in an area. However, dynamic management has occupied a core place in studies on the sustainable development of public health but dynamic management depends on proactive strategies based on statistically verified approaches, like Artificial Intelligence (AI). In this study, an SSLPNN model has been trained to fit public health associated data into an appropriate class, allowing GPR to predict the number of confirmed COVID-19 cases in an area based on the given values of selected parameters. Therefore, this tool can help authorities in different ecological settings effectively manage COVID-19." @default.
- W3119643102 created "2021-01-18" @default.
- W3119643102 creator A5003316065 @default.
- W3119643102 creator A5019116175 @default.
- W3119643102 creator A5027472030 @default.
- W3119643102 creator A5033864798 @default.
- W3119643102 creator A5065681054 @default.
- W3119643102 creator A5082292122 @default.
- W3119643102 date "2021-01-01" @default.
- W3119643102 modified "2023-09-27" @default.
- W3119643102 title "Prediction of COVID-19 Cases using Machine Learning for Effective Public Health Management" @default.
- W3119643102 cites W1770383875 @default.
- W3119643102 cites W1973106674 @default.
- W3119643102 cites W2055102700 @default.
- W3119643102 cites W2127435093 @default.
- W3119643102 cites W2148050583 @default.
- W3119643102 cites W2385711297 @default.
- W3119643102 cites W2809409970 @default.
- W3119643102 cites W2914782224 @default.
- W3119643102 cites W2943804616 @default.
- W3119643102 cites W2958109836 @default.
- W3119643102 cites W2997515054 @default.
- W3119643102 cites W3004202398 @default.
- W3119643102 cites W3006070132 @default.
- W3119643102 cites W3006334980 @default.
- W3119643102 cites W3008633756 @default.
- W3119643102 cites W3012038738 @default.
- W3119643102 cites W3014405676 @default.
- W3119643102 cites W3015335313 @default.
- W3119643102 cites W3035011439 @default.
- W3119643102 cites W4297628217 @default.
- W3119643102 doi "https://doi.org/10.32604/cmc.2021.013067" @default.
- W3119643102 hasPublicationYear "2021" @default.
- W3119643102 type Work @default.
- W3119643102 sameAs 3119643102 @default.
- W3119643102 citedByCount "18" @default.
- W3119643102 countsByYear W31196431022021 @default.
- W3119643102 countsByYear W31196431022022 @default.
- W3119643102 crossrefType "journal-article" @default.
- W3119643102 hasAuthorship W3119643102A5003316065 @default.
- W3119643102 hasAuthorship W3119643102A5019116175 @default.
- W3119643102 hasAuthorship W3119643102A5027472030 @default.
- W3119643102 hasAuthorship W3119643102A5033864798 @default.
- W3119643102 hasAuthorship W3119643102A5065681054 @default.
- W3119643102 hasAuthorship W3119643102A5082292122 @default.
- W3119643102 hasBestOaLocation W31196431021 @default.
- W3119643102 hasConcept C105795698 @default.
- W3119643102 hasConcept C119857082 @default.
- W3119643102 hasConcept C139945424 @default.
- W3119643102 hasConcept C152877465 @default.
- W3119643102 hasConcept C154945302 @default.
- W3119643102 hasConcept C17744445 @default.
- W3119643102 hasConcept C179717631 @default.
- W3119643102 hasConcept C199539241 @default.
- W3119643102 hasConcept C205649164 @default.
- W3119643102 hasConcept C2908647359 @default.
- W3119643102 hasConcept C33923547 @default.
- W3119643102 hasConcept C41008148 @default.
- W3119643102 hasConcept C45804977 @default.
- W3119643102 hasConcept C50644808 @default.
- W3119643102 hasConcept C552854447 @default.
- W3119643102 hasConcept C60908668 @default.
- W3119643102 hasConcept C71924100 @default.
- W3119643102 hasConcept C81692654 @default.
- W3119643102 hasConcept C83546350 @default.
- W3119643102 hasConcept C99454951 @default.
- W3119643102 hasConceptScore W3119643102C105795698 @default.
- W3119643102 hasConceptScore W3119643102C119857082 @default.
- W3119643102 hasConceptScore W3119643102C139945424 @default.
- W3119643102 hasConceptScore W3119643102C152877465 @default.
- W3119643102 hasConceptScore W3119643102C154945302 @default.
- W3119643102 hasConceptScore W3119643102C17744445 @default.
- W3119643102 hasConceptScore W3119643102C179717631 @default.
- W3119643102 hasConceptScore W3119643102C199539241 @default.
- W3119643102 hasConceptScore W3119643102C205649164 @default.
- W3119643102 hasConceptScore W3119643102C2908647359 @default.
- W3119643102 hasConceptScore W3119643102C33923547 @default.
- W3119643102 hasConceptScore W3119643102C41008148 @default.
- W3119643102 hasConceptScore W3119643102C45804977 @default.
- W3119643102 hasConceptScore W3119643102C50644808 @default.
- W3119643102 hasConceptScore W3119643102C552854447 @default.
- W3119643102 hasConceptScore W3119643102C60908668 @default.
- W3119643102 hasConceptScore W3119643102C71924100 @default.
- W3119643102 hasConceptScore W3119643102C81692654 @default.
- W3119643102 hasConceptScore W3119643102C83546350 @default.
- W3119643102 hasConceptScore W3119643102C99454951 @default.
- W3119643102 hasIssue "3" @default.
- W3119643102 hasLocation W31196431021 @default.
- W3119643102 hasOpenAccess W3119643102 @default.
- W3119643102 hasPrimaryLocation W31196431021 @default.
- W3119643102 hasRelatedWork W1551818188 @default.
- W3119643102 hasRelatedWork W2091943352 @default.
- W3119643102 hasRelatedWork W2740570758 @default.
- W3119643102 hasRelatedWork W2749461815 @default.
- W3119643102 hasRelatedWork W2837262373 @default.
- W3119643102 hasRelatedWork W2890929759 @default.
- W3119643102 hasRelatedWork W2946835660 @default.
- W3119643102 hasRelatedWork W3185179407 @default.