Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119667787> ?p ?o ?g. }
- W3119667787 endingPage "694" @default.
- W3119667787 startingPage "683" @default.
- W3119667787 abstract "In this paper, an evolutionary scan-matching approach is proposed to solve an optimization issue in simultaneous localization and mapping (SLAM). A rich literature has been invested in this direction, however, most of the proposed approaches lack fast convergence and simplicity regarding the optimization process, which should directly affect the accuracy of the environment’s map and the estimated pose. It is a line of research that is always active, offering various solutions to this issue. Among many SLAM methods, the normal distributions transform approach (NDT) has shown high performances, where numerous works have been published up to date and many studies demonstrate its efficiency wrt other methods. Nevertheless, few works have been interested to solve the optimization issue. The proposed solution is based on NDT scan-matching using particle swarm optimization (PSO) and it is dubbed NDT-PSO. The main contribution is to solve the pose estimation problem based on PSO and iterative NDT maps. The performances of the NDT-PSO approach have been proven in real experiments performed on a car-like mobile robot in both static and dynamic environments. NDT-PSO is tested for different swarm sizes, and the results show that 70 particles are more than enough to find the best particle while avoiding local minima even in loop closing. The algorithm is also suitable for real time applications, with an average runnnig time of $$145 rm{ms}$$ for 70 particles and 70 iterations of the optimization process. This value can be further reduced using fewer particles and iterations. The accuracy of the proposed approach is also evaluated wrt other SLAM methods widely used among the robot operating system community and it has been shown that NDT-PSO outperforms these algorithms." @default.
- W3119667787 created "2021-01-18" @default.
- W3119667787 creator A5007777913 @default.
- W3119667787 creator A5021392596 @default.
- W3119667787 creator A5076861345 @default.
- W3119667787 date "2021-01-03" @default.
- W3119667787 modified "2023-10-18" @default.
- W3119667787 title "Particle swarm optimization for solving a scan-matching problem based on the normal distributions transform" @default.
- W3119667787 cites W1967740178 @default.
- W3119667787 cites W1968727354 @default.
- W3119667787 cites W1982100856 @default.
- W3119667787 cites W2011777324 @default.
- W3119667787 cites W2012502415 @default.
- W3119667787 cites W2047563877 @default.
- W3119667787 cites W2100053656 @default.
- W3119667787 cites W2118799426 @default.
- W3119667787 cites W2119058585 @default.
- W3119667787 cites W2124342895 @default.
- W3119667787 cites W2132631693 @default.
- W3119667787 cites W2133123543 @default.
- W3119667787 cites W2140881794 @default.
- W3119667787 cites W2146123848 @default.
- W3119667787 cites W2150981915 @default.
- W3119667787 cites W2152195021 @default.
- W3119667787 cites W2154418813 @default.
- W3119667787 cites W2165299997 @default.
- W3119667787 cites W2169245194 @default.
- W3119667787 cites W2207136187 @default.
- W3119667787 cites W2324628269 @default.
- W3119667787 cites W2409635379 @default.
- W3119667787 cites W2415398435 @default.
- W3119667787 cites W2502039689 @default.
- W3119667787 cites W2560389705 @default.
- W3119667787 cites W2569720095 @default.
- W3119667787 cites W2573137292 @default.
- W3119667787 cites W2605103573 @default.
- W3119667787 cites W2774861278 @default.
- W3119667787 cites W2774872690 @default.
- W3119667787 cites W2775675275 @default.
- W3119667787 cites W2794228874 @default.
- W3119667787 cites W2905733586 @default.
- W3119667787 cites W2909728968 @default.
- W3119667787 cites W2927636958 @default.
- W3119667787 cites W2928612587 @default.
- W3119667787 cites W2935892613 @default.
- W3119667787 cites W2938382370 @default.
- W3119667787 cites W2972093761 @default.
- W3119667787 cites W2998553334 @default.
- W3119667787 cites W3007317032 @default.
- W3119667787 cites W3024965910 @default.
- W3119667787 cites W3038102268 @default.
- W3119667787 cites W3085594901 @default.
- W3119667787 cites W3124420883 @default.
- W3119667787 cites W4229766439 @default.
- W3119667787 cites W4287693038 @default.
- W3119667787 doi "https://doi.org/10.1007/s12065-020-00545-y" @default.
- W3119667787 hasPublicationYear "2021" @default.
- W3119667787 type Work @default.
- W3119667787 sameAs 3119667787 @default.
- W3119667787 citedByCount "5" @default.
- W3119667787 countsByYear W31196677872022 @default.
- W3119667787 countsByYear W31196677872023 @default.
- W3119667787 crossrefType "journal-article" @default.
- W3119667787 hasAuthorship W3119667787A5007777913 @default.
- W3119667787 hasAuthorship W3119667787A5021392596 @default.
- W3119667787 hasAuthorship W3119667787A5076861345 @default.
- W3119667787 hasBestOaLocation W31196677872 @default.
- W3119667787 hasConcept C105795698 @default.
- W3119667787 hasConcept C111919701 @default.
- W3119667787 hasConcept C11413529 @default.
- W3119667787 hasConcept C122357587 @default.
- W3119667787 hasConcept C126255220 @default.
- W3119667787 hasConcept C126838900 @default.
- W3119667787 hasConcept C134306372 @default.
- W3119667787 hasConcept C162324750 @default.
- W3119667787 hasConcept C165064840 @default.
- W3119667787 hasConcept C17744445 @default.
- W3119667787 hasConcept C186633575 @default.
- W3119667787 hasConcept C199539241 @default.
- W3119667787 hasConcept C2777303404 @default.
- W3119667787 hasConcept C2778775528 @default.
- W3119667787 hasConcept C33923547 @default.
- W3119667787 hasConcept C41008148 @default.
- W3119667787 hasConcept C50522688 @default.
- W3119667787 hasConcept C56529433 @default.
- W3119667787 hasConcept C71924100 @default.
- W3119667787 hasConcept C85617194 @default.
- W3119667787 hasConcept C98045186 @default.
- W3119667787 hasConceptScore W3119667787C105795698 @default.
- W3119667787 hasConceptScore W3119667787C111919701 @default.
- W3119667787 hasConceptScore W3119667787C11413529 @default.
- W3119667787 hasConceptScore W3119667787C122357587 @default.
- W3119667787 hasConceptScore W3119667787C126255220 @default.
- W3119667787 hasConceptScore W3119667787C126838900 @default.
- W3119667787 hasConceptScore W3119667787C134306372 @default.
- W3119667787 hasConceptScore W3119667787C162324750 @default.
- W3119667787 hasConceptScore W3119667787C165064840 @default.
- W3119667787 hasConceptScore W3119667787C17744445 @default.