Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119686997> ?p ?o ?g. }
- W3119686997 abstract "The challenging task of multi-object tracking (MOT) requires simultaneous reasoning about track initialization, identity, and spatio-temporal trajectories. We formulate this task as a frame-to-frame set prediction problem and introduce TrackFormer, an end-to-end trainable MOT approach based on an encoder-decoder Transformer architecture. Our model achieves data association between frames via attention by evolving a set of track predictions through a video sequence. The Transformer decoder initializes new tracks from static object queries and autoregressively follows existing tracks in space and time with the conceptually new and identity preserving track queries. Both query types benefit from self- and encoder-decoder attention on global frame-level features, thereby omitting any additional graph optimization or modeling of motion and/or appearance. TrackFormer introduces a new tracking-by-attention paradigm and while simple in its design is able to achieve state-of-the-art performance on the task of multi-object tracking (MOT17) and segmentation (MOTS20). The code is available at https://github.com/timmeinhardt/TrackFormer" @default.
- W3119686997 created "2021-01-18" @default.
- W3119686997 creator A5036069974 @default.
- W3119686997 creator A5058636760 @default.
- W3119686997 creator A5077676287 @default.
- W3119686997 creator A5090283032 @default.
- W3119686997 date "2022-06-01" @default.
- W3119686997 modified "2023-10-09" @default.
- W3119686997 title "TrackFormer: Multi-Object Tracking with Transformers" @default.
- W3119686997 cites W1572666543 @default.
- W3119686997 cites W2016135469 @default.
- W3119686997 cites W2020209171 @default.
- W3119686997 cites W2047286693 @default.
- W3119686997 cites W2098669323 @default.
- W3119686997 cites W2111644456 @default.
- W3119686997 cites W2124541566 @default.
- W3119686997 cites W2124781496 @default.
- W3119686997 cites W2134529534 @default.
- W3119686997 cites W2146183743 @default.
- W3119686997 cites W2171243491 @default.
- W3119686997 cites W2194775991 @default.
- W3119686997 cites W2204750386 @default.
- W3119686997 cites W2237765446 @default.
- W3119686997 cites W2424778531 @default.
- W3119686997 cites W2474389331 @default.
- W3119686997 cites W2511791013 @default.
- W3119686997 cites W2532516272 @default.
- W3119686997 cites W2534527426 @default.
- W3119686997 cites W2739491435 @default.
- W3119686997 cites W2897582990 @default.
- W3119686997 cites W2900871370 @default.
- W3119686997 cites W2953920664 @default.
- W3119686997 cites W2962766617 @default.
- W3119686997 cites W2962855257 @default.
- W3119686997 cites W2962923976 @default.
- W3119686997 cites W2963150697 @default.
- W3119686997 cites W2963481014 @default.
- W3119686997 cites W2964015640 @default.
- W3119686997 cites W2981393651 @default.
- W3119686997 cites W2986732333 @default.
- W3119686997 cites W3028052296 @default.
- W3119686997 cites W3034240185 @default.
- W3119686997 cites W3035060563 @default.
- W3119686997 cites W3035442500 @default.
- W3119686997 cites W3035727180 @default.
- W3119686997 cites W3096068180 @default.
- W3119686997 cites W3099887740 @default.
- W3119686997 cites W3165926952 @default.
- W3119686997 cites W3167949052 @default.
- W3119686997 cites W3171516518 @default.
- W3119686997 cites W3175782503 @default.
- W3119686997 cites W3176403636 @default.
- W3119686997 cites W3190647944 @default.
- W3119686997 cites W3207452968 @default.
- W3119686997 cites W4214494320 @default.
- W3119686997 cites W4214516362 @default.
- W3119686997 cites W607748843 @default.
- W3119686997 cites W639708223 @default.
- W3119686997 doi "https://doi.org/10.1109/cvpr52688.2022.00864" @default.
- W3119686997 hasPublicationYear "2022" @default.
- W3119686997 type Work @default.
- W3119686997 sameAs 3119686997 @default.
- W3119686997 citedByCount "174" @default.
- W3119686997 countsByYear W31196869972020 @default.
- W3119686997 countsByYear W31196869972021 @default.
- W3119686997 countsByYear W31196869972022 @default.
- W3119686997 countsByYear W31196869972023 @default.
- W3119686997 crossrefType "proceedings-article" @default.
- W3119686997 hasAuthorship W3119686997A5036069974 @default.
- W3119686997 hasAuthorship W3119686997A5058636760 @default.
- W3119686997 hasAuthorship W3119686997A5077676287 @default.
- W3119686997 hasAuthorship W3119686997A5090283032 @default.
- W3119686997 hasBestOaLocation W31196869972 @default.
- W3119686997 hasConcept C111919701 @default.
- W3119686997 hasConcept C114466953 @default.
- W3119686997 hasConcept C118505674 @default.
- W3119686997 hasConcept C121332964 @default.
- W3119686997 hasConcept C154945302 @default.
- W3119686997 hasConcept C165801399 @default.
- W3119686997 hasConcept C199360897 @default.
- W3119686997 hasConcept C202474056 @default.
- W3119686997 hasConcept C2781238097 @default.
- W3119686997 hasConcept C31972630 @default.
- W3119686997 hasConcept C41008148 @default.
- W3119686997 hasConcept C62520636 @default.
- W3119686997 hasConcept C66322947 @default.
- W3119686997 hasConceptScore W3119686997C111919701 @default.
- W3119686997 hasConceptScore W3119686997C114466953 @default.
- W3119686997 hasConceptScore W3119686997C118505674 @default.
- W3119686997 hasConceptScore W3119686997C121332964 @default.
- W3119686997 hasConceptScore W3119686997C154945302 @default.
- W3119686997 hasConceptScore W3119686997C165801399 @default.
- W3119686997 hasConceptScore W3119686997C199360897 @default.
- W3119686997 hasConceptScore W3119686997C202474056 @default.
- W3119686997 hasConceptScore W3119686997C2781238097 @default.
- W3119686997 hasConceptScore W3119686997C31972630 @default.
- W3119686997 hasConceptScore W3119686997C41008148 @default.
- W3119686997 hasConceptScore W3119686997C62520636 @default.
- W3119686997 hasConceptScore W3119686997C66322947 @default.
- W3119686997 hasLocation W31196869971 @default.