Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119696651> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W3119696651 abstract "Abstract In this study, the microstructure and solidus and liquidus of several Ni-Co-Hf-Zr-Ti-Al braze alloys were first examined with the objective to develop a B and Si free low melting braze alloy for narrow gap (NGB) and wide gap brazing (WGB) and turbine component repair applications. Among various alloys examined, DSC was used to measure the solidus and liquidus during heating and cooling cycles. Following the measurements of liquidus and solidus, the microstructure was evaluated using SEM. Equations for calculating solidus and liquidus based on alloy’s compositions were established and the functions of each elements on these two characteristic temperatures were discussed. One selected alloy with a liquidus of 1201 °C was further employed for NGB and WGB experiments. The results showed that it was able join CMSX-4 at 1240°C without interfacial voids; and with the use of externally applied pressure and extended homogenization treatment the interfacial intermetallic compounds were substantially removed. Furthermore, the same braze alloy was used to fill a large artificial cavity in a WGB scheme at a reduced temperature of 1200°C. The braze alloy was able to fully bond the filler powder alloy in addition to join the two alloys to a IN 738 substrate. Finally, oxidation test was conducted at 1050°C (isothermal in static air) for 100 hours after NGB of CMSX-4 and WGB of IN 738. The results showed that the oxide formed on the standalone braze alloy is very dense and there is no sign of spallation. It contained primarily NiO (+CoO) with no other elements measured. For the NGB joints, large amount of scale spallation was observed on base alloy CMSX-4 while the NGB joint remained spallation free. The oxide formed on the NGB was NiO with partitions of Co, Al, Ti, Cr, and W. The WGB joint region in IN 738 showed oxide scale spallation on the IN 738 substrate side, leaving behind steps and depression on the sample surface. In the WGB joint itself, there were three notable phases after oxidation test, however, no scale spallation could be found. For the majority part of the surface, a Ni-rich oxide covered the surface. There were areas of smaller oxide particles with higher Cr content. Overall, the new boron/silicon free braze alloy was found to be able to join several superalloys in both WGB and NGB schemes without occurrence of defects and the oxidation resistance was superior to both substrate alloys examined in this study." @default.
- W3119696651 created "2021-01-18" @default.
- W3119696651 creator A5031290487 @default.
- W3119696651 date "2020-09-21" @default.
- W3119696651 modified "2023-10-16" @default.
- W3119696651 title "Microstructure and Oxidation Behaviour of NGB and WGB Joints With Boron/Silicon Free Nickel Base Braze Alloys" @default.
- W3119696651 doi "https://doi.org/10.1115/gt2020-14017" @default.
- W3119696651 hasPublicationYear "2020" @default.
- W3119696651 type Work @default.
- W3119696651 sameAs 3119696651 @default.
- W3119696651 citedByCount "1" @default.
- W3119696651 countsByYear W31196966512021 @default.
- W3119696651 crossrefType "proceedings-article" @default.
- W3119696651 hasAuthorship W3119696651A5031290487 @default.
- W3119696651 hasConcept C121332964 @default.
- W3119696651 hasConcept C133347239 @default.
- W3119696651 hasConcept C145653223 @default.
- W3119696651 hasConcept C191897082 @default.
- W3119696651 hasConcept C192562407 @default.
- W3119696651 hasConcept C207055975 @default.
- W3119696651 hasConcept C23693375 @default.
- W3119696651 hasConcept C27501479 @default.
- W3119696651 hasConcept C2780026712 @default.
- W3119696651 hasConcept C86171150 @default.
- W3119696651 hasConcept C87976508 @default.
- W3119696651 hasConcept C97355855 @default.
- W3119696651 hasConceptScore W3119696651C121332964 @default.
- W3119696651 hasConceptScore W3119696651C133347239 @default.
- W3119696651 hasConceptScore W3119696651C145653223 @default.
- W3119696651 hasConceptScore W3119696651C191897082 @default.
- W3119696651 hasConceptScore W3119696651C192562407 @default.
- W3119696651 hasConceptScore W3119696651C207055975 @default.
- W3119696651 hasConceptScore W3119696651C23693375 @default.
- W3119696651 hasConceptScore W3119696651C27501479 @default.
- W3119696651 hasConceptScore W3119696651C2780026712 @default.
- W3119696651 hasConceptScore W3119696651C86171150 @default.
- W3119696651 hasConceptScore W3119696651C87976508 @default.
- W3119696651 hasConceptScore W3119696651C97355855 @default.
- W3119696651 hasLocation W31196966511 @default.
- W3119696651 hasOpenAccess W3119696651 @default.
- W3119696651 hasPrimaryLocation W31196966511 @default.
- W3119696651 hasRelatedWork W19655517 @default.
- W3119696651 hasRelatedWork W20480778 @default.
- W3119696651 hasRelatedWork W20893380 @default.
- W3119696651 hasRelatedWork W36026676 @default.
- W3119696651 hasRelatedWork W39759149 @default.
- W3119696651 hasRelatedWork W43594369 @default.
- W3119696651 hasRelatedWork W44778404 @default.
- W3119696651 hasRelatedWork W54162017 @default.
- W3119696651 hasRelatedWork W9859308 @default.
- W3119696651 hasRelatedWork W18143971 @default.
- W3119696651 isParatext "false" @default.
- W3119696651 isRetracted "false" @default.
- W3119696651 magId "3119696651" @default.
- W3119696651 workType "article" @default.