Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119704807> ?p ?o ?g. }
- W3119704807 endingPage "110735" @default.
- W3119704807 startingPage "110735" @default.
- W3119704807 abstract "The large amount of missing values has challenged the application of satellite-retrieved aerosol optical depth (AOD) in mapping surface PM2.5 concentrations. In this study, we developed a non-AOD random forest model to estimate daily concentrations of PM2.5 in Guangdong Province, China, where more than 80% of AOD data were missing. The predictive ability of the non-AOD model was compared with that of a AOD-based model. Daily ground-based measurements of PM2.5 were obtained from 148 ground-monitoring sites in Guangdong with a 60 km rectangle buffer from January 2016 to December 2018. Daily MODIS MAIAC AOD were downloaded from NASA at a resolution of approximately 1 km. Two random forest models were developed to predict ground-level PM2.5 with one included AOD as a predictor and the other one without AOD. The two random forest models were developed using the same dataset and their predictive abilities were compared. The results of 10-fold cross validation (CV) showed that the non-AOD and AOD-based random forest models yielded similar performance. The CV R2 (RMSE) for the non-AOD model in 2016–2018 were 0.82 (8.4 μg/m3), 0.81 (9.5 μg/m3) and 0.78 (9.4 μg/m3), and those for AOD-based model were 0.83 (8.2 μg/m3), 0.82 (9.2 μg/m3) and 0.80 (9.0 μg/m3), respectively. Higher consistency of estimated PM2.5 were observed in areas close to monitoring sites than those far away from sites, and in southern coastal than northern areas. As the non-AOD random forest model is not affected by AOD missingness, it can be used for epidemiological studies to estimate individual-level exposure to PM2.5 at a high resolution without spatial or temporal gaps." @default.
- W3119704807 created "2021-01-18" @default.
- W3119704807 creator A5000578129 @default.
- W3119704807 creator A5000842663 @default.
- W3119704807 creator A5002662971 @default.
- W3119704807 creator A5025967148 @default.
- W3119704807 creator A5047043248 @default.
- W3119704807 creator A5069735118 @default.
- W3119704807 date "2021-04-01" @default.
- W3119704807 modified "2023-09-25" @default.
- W3119704807 title "The comparison of AOD-based and non-AOD prediction models for daily PM2.5 estimation in Guangdong province, China with poor AOD coverage" @default.
- W3119704807 cites W2017388934 @default.
- W3119704807 cites W2054806977 @default.
- W3119704807 cites W2102325988 @default.
- W3119704807 cites W2168114717 @default.
- W3119704807 cites W2172839472 @default.
- W3119704807 cites W2188200382 @default.
- W3119704807 cites W2205838304 @default.
- W3119704807 cites W2233873426 @default.
- W3119704807 cites W2275537745 @default.
- W3119704807 cites W2297152540 @default.
- W3119704807 cites W2314479789 @default.
- W3119704807 cites W2316257305 @default.
- W3119704807 cites W2323483937 @default.
- W3119704807 cites W2343865278 @default.
- W3119704807 cites W2516758599 @default.
- W3119704807 cites W2553429315 @default.
- W3119704807 cites W2587800593 @default.
- W3119704807 cites W2607350314 @default.
- W3119704807 cites W2620300958 @default.
- W3119704807 cites W2739452932 @default.
- W3119704807 cites W2740174665 @default.
- W3119704807 cites W2767202706 @default.
- W3119704807 cites W2800133189 @default.
- W3119704807 cites W2804076223 @default.
- W3119704807 cites W2885226068 @default.
- W3119704807 cites W2900907778 @default.
- W3119704807 cites W2911084988 @default.
- W3119704807 cites W2912750253 @default.
- W3119704807 cites W2953978338 @default.
- W3119704807 cites W2980801670 @default.
- W3119704807 cites W3011609039 @default.
- W3119704807 cites W3015976670 @default.
- W3119704807 cites W3088297551 @default.
- W3119704807 doi "https://doi.org/10.1016/j.envres.2021.110735" @default.
- W3119704807 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33460631" @default.
- W3119704807 hasPublicationYear "2021" @default.
- W3119704807 type Work @default.
- W3119704807 sameAs 3119704807 @default.
- W3119704807 citedByCount "18" @default.
- W3119704807 countsByYear W31197048072022 @default.
- W3119704807 countsByYear W31197048072023 @default.
- W3119704807 crossrefType "journal-article" @default.
- W3119704807 hasAuthorship W3119704807A5000578129 @default.
- W3119704807 hasAuthorship W3119704807A5000842663 @default.
- W3119704807 hasAuthorship W3119704807A5002662971 @default.
- W3119704807 hasAuthorship W3119704807A5025967148 @default.
- W3119704807 hasAuthorship W3119704807A5047043248 @default.
- W3119704807 hasAuthorship W3119704807A5069735118 @default.
- W3119704807 hasConcept C105795698 @default.
- W3119704807 hasConcept C119857082 @default.
- W3119704807 hasConcept C153294291 @default.
- W3119704807 hasConcept C169258074 @default.
- W3119704807 hasConcept C205649164 @default.
- W3119704807 hasConcept C33923547 @default.
- W3119704807 hasConcept C39432304 @default.
- W3119704807 hasConcept C41008148 @default.
- W3119704807 hasConcept C45804977 @default.
- W3119704807 hasConcept C62649853 @default.
- W3119704807 hasConceptScore W3119704807C105795698 @default.
- W3119704807 hasConceptScore W3119704807C119857082 @default.
- W3119704807 hasConceptScore W3119704807C153294291 @default.
- W3119704807 hasConceptScore W3119704807C169258074 @default.
- W3119704807 hasConceptScore W3119704807C205649164 @default.
- W3119704807 hasConceptScore W3119704807C33923547 @default.
- W3119704807 hasConceptScore W3119704807C39432304 @default.
- W3119704807 hasConceptScore W3119704807C41008148 @default.
- W3119704807 hasConceptScore W3119704807C45804977 @default.
- W3119704807 hasConceptScore W3119704807C62649853 @default.
- W3119704807 hasFunder F4320321001 @default.
- W3119704807 hasFunder F4320335787 @default.
- W3119704807 hasLocation W31197048071 @default.
- W3119704807 hasOpenAccess W3119704807 @default.
- W3119704807 hasPrimaryLocation W31197048071 @default.
- W3119704807 hasRelatedWork W1964024921 @default.
- W3119704807 hasRelatedWork W2022420161 @default.
- W3119704807 hasRelatedWork W2037995797 @default.
- W3119704807 hasRelatedWork W2116047388 @default.
- W3119704807 hasRelatedWork W2126095845 @default.
- W3119704807 hasRelatedWork W2169359701 @default.
- W3119704807 hasRelatedWork W2245549564 @default.
- W3119704807 hasRelatedWork W3000280057 @default.
- W3119704807 hasRelatedWork W3191198889 @default.
- W3119704807 hasRelatedWork W4362653472 @default.
- W3119704807 hasVolume "195" @default.
- W3119704807 isParatext "false" @default.
- W3119704807 isRetracted "false" @default.
- W3119704807 magId "3119704807" @default.