Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119776735> ?p ?o ?g. }
- W3119776735 endingPage "2221" @default.
- W3119776735 startingPage "2206" @default.
- W3119776735 abstract "In this article, an over-segmentation-based uphill clustering method for individual extraction of urban street trees from mobile laser scanning data is proposed to solve the problem that the existing methods depend heavily on tree trunks and have poor extraction results in complex environments where the tree trunks are blocked by cars and green belts, and the crown touching or interlocking is large. First, supervoxels are generated by over-segmentation, so that the amount of original data is reduced and the boundaries of different objects are effectively preserved. Then, the potential tree crowns and trunks are obtained by extracting typical object structures. Finally, individual trees extraction is realized by extracting independent crowns from the potential crowns via uphill clustering and searching corresponding trunks from the potential trunks. The main contribution of this article is to propose an individual extraction method for street trees based on uphill clustering that does not rely on the extraction of tree trunks, which improves the completeness of extracted results in complex urban environments. The experimental results demonstrate that the proposed method effectively extracted the street trees individually from the test data, with the completeness of 100%, the correctness of 96.4%, and the F-score of 0.98. Moreover, the proposed method also achieves good result for the extraction of greening trees that are heavily blocked in the green belt areas. And the corresponding completeness, correctness, and the F-score are 94.6%, 83.3%, and 0.89, respectively." @default.
- W3119776735 created "2021-01-18" @default.
- W3119776735 creator A5001697092 @default.
- W3119776735 creator A5011514919 @default.
- W3119776735 creator A5018715956 @default.
- W3119776735 creator A5079275442 @default.
- W3119776735 date "2021-01-01" @default.
- W3119776735 modified "2023-10-12" @default.
- W3119776735 title "An Over-Segmentation-Based Uphill Clustering Method for Individual Trees Extraction in Urban Street Areas From MLS Data" @default.
- W3119776735 cites W1652321627 @default.
- W3119776735 cites W1940621874 @default.
- W3119776735 cites W2018189911 @default.
- W3119776735 cites W2019190157 @default.
- W3119776735 cites W2041642242 @default.
- W3119776735 cites W2043543487 @default.
- W3119776735 cites W2052794186 @default.
- W3119776735 cites W2099346911 @default.
- W3119776735 cites W2100816864 @default.
- W3119776735 cites W2101907415 @default.
- W3119776735 cites W2110992253 @default.
- W3119776735 cites W2111915155 @default.
- W3119776735 cites W2135249503 @default.
- W3119776735 cites W2147357829 @default.
- W3119776735 cites W2152864241 @default.
- W3119776735 cites W2211970501 @default.
- W3119776735 cites W2261435657 @default.
- W3119776735 cites W2410072516 @default.
- W3119776735 cites W2509596959 @default.
- W3119776735 cites W2512829498 @default.
- W3119776735 cites W2530953581 @default.
- W3119776735 cites W2560012107 @default.
- W3119776735 cites W2583461717 @default.
- W3119776735 cites W2596873134 @default.
- W3119776735 cites W2604378975 @default.
- W3119776735 cites W2612665351 @default.
- W3119776735 cites W2616896738 @default.
- W3119776735 cites W2620773907 @default.
- W3119776735 cites W2664032461 @default.
- W3119776735 cites W2774763808 @default.
- W3119776735 cites W2794121684 @default.
- W3119776735 cites W2801833195 @default.
- W3119776735 cites W2804872164 @default.
- W3119776735 cites W2893333163 @default.
- W3119776735 cites W2900757738 @default.
- W3119776735 cites W2902218628 @default.
- W3119776735 cites W2903388419 @default.
- W3119776735 cites W2934180171 @default.
- W3119776735 cites W2947292611 @default.
- W3119776735 cites W2963281829 @default.
- W3119776735 cites W2973342970 @default.
- W3119776735 cites W3003249314 @default.
- W3119776735 cites W3012494314 @default.
- W3119776735 cites W3035122126 @default.
- W3119776735 cites W3102274561 @default.
- W3119776735 doi "https://doi.org/10.1109/jstars.2021.3051653" @default.
- W3119776735 hasPublicationYear "2021" @default.
- W3119776735 type Work @default.
- W3119776735 sameAs 3119776735 @default.
- W3119776735 citedByCount "11" @default.
- W3119776735 countsByYear W31197767352021 @default.
- W3119776735 countsByYear W31197767352022 @default.
- W3119776735 countsByYear W31197767352023 @default.
- W3119776735 crossrefType "journal-article" @default.
- W3119776735 hasAuthorship W3119776735A5001697092 @default.
- W3119776735 hasAuthorship W3119776735A5011514919 @default.
- W3119776735 hasAuthorship W3119776735A5018715956 @default.
- W3119776735 hasAuthorship W3119776735A5079275442 @default.
- W3119776735 hasBestOaLocation W31197767351 @default.
- W3119776735 hasConcept C113174947 @default.
- W3119776735 hasConcept C11413529 @default.
- W3119776735 hasConcept C124101348 @default.
- W3119776735 hasConcept C124504099 @default.
- W3119776735 hasConcept C134306372 @default.
- W3119776735 hasConcept C153180895 @default.
- W3119776735 hasConcept C154945302 @default.
- W3119776735 hasConcept C17231256 @default.
- W3119776735 hasConcept C185592680 @default.
- W3119776735 hasConcept C31972630 @default.
- W3119776735 hasConcept C33923547 @default.
- W3119776735 hasConcept C41008148 @default.
- W3119776735 hasConcept C43617362 @default.
- W3119776735 hasConcept C4725764 @default.
- W3119776735 hasConcept C52622490 @default.
- W3119776735 hasConcept C55439883 @default.
- W3119776735 hasConcept C73555534 @default.
- W3119776735 hasConcept C89600930 @default.
- W3119776735 hasConceptScore W3119776735C113174947 @default.
- W3119776735 hasConceptScore W3119776735C11413529 @default.
- W3119776735 hasConceptScore W3119776735C124101348 @default.
- W3119776735 hasConceptScore W3119776735C124504099 @default.
- W3119776735 hasConceptScore W3119776735C134306372 @default.
- W3119776735 hasConceptScore W3119776735C153180895 @default.
- W3119776735 hasConceptScore W3119776735C154945302 @default.
- W3119776735 hasConceptScore W3119776735C17231256 @default.
- W3119776735 hasConceptScore W3119776735C185592680 @default.
- W3119776735 hasConceptScore W3119776735C31972630 @default.
- W3119776735 hasConceptScore W3119776735C33923547 @default.
- W3119776735 hasConceptScore W3119776735C41008148 @default.