Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119787422> ?p ?o ?g. }
- W3119787422 abstract "Perception systems on autonomous vehicles have the challenge of understanding the traffic scene in different situations. The fusion of redundant information obtained from different sources has been shown considerable progress under different methodologies to achieve this objective. However, new opportunities are available to obtain better fusion results with the advance of deep-learning models and computing hardware. In this paper, we aim to recognize moving objects in traffic scenes through the fusion of semantic information with occupancy-grid estimations. Our approach considers a deep-learning model with inference times between 22 to 55 milliseconds. Moreover, we use a Bayesian occupancy framework with a Highly-parallelized design to obtain the occupancy-grid estimations. We validate our approach using experimental results with real-world data on urban scenery." @default.
- W3119787422 created "2021-01-18" @default.
- W3119787422 creator A5003475208 @default.
- W3119787422 creator A5075545604 @default.
- W3119787422 creator A5088969354 @default.
- W3119787422 date "2020-12-13" @default.
- W3119787422 modified "2023-09-27" @default.
- W3119787422 title "Recognize Moving Objects Around an Autonomous Vehicle Considering a Deep-learning Detector Model and Dynamic Bayesian Occupancy" @default.
- W3119787422 cites W1536680647 @default.
- W3119787422 cites W1946092254 @default.
- W3119787422 cites W2102605133 @default.
- W3119787422 cites W2115579991 @default.
- W3119787422 cites W2339186457 @default.
- W3119787422 cites W2407521645 @default.
- W3119787422 cites W2570343428 @default.
- W3119787422 cites W2588221994 @default.
- W3119787422 cites W2613718673 @default.
- W3119787422 cites W2757216539 @default.
- W3119787422 cites W2773495332 @default.
- W3119787422 cites W2796347433 @default.
- W3119787422 cites W2884367402 @default.
- W3119787422 cites W2891329668 @default.
- W3119787422 cites W2904631343 @default.
- W3119787422 cites W2908141607 @default.
- W3119787422 cites W2911486422 @default.
- W3119787422 cites W2921118689 @default.
- W3119787422 cites W2953303875 @default.
- W3119787422 cites W2963037989 @default.
- W3119787422 cites W2963041685 @default.
- W3119787422 cites W2963589995 @default.
- W3119787422 cites W2963604034 @default.
- W3119787422 cites W2964332807 @default.
- W3119787422 cites W2969566464 @default.
- W3119787422 cites W2970003526 @default.
- W3119787422 cites W2970938561 @default.
- W3119787422 cites W2971295107 @default.
- W3119787422 cites W3106250896 @default.
- W3119787422 cites W3106493128 @default.
- W3119787422 doi "https://doi.org/10.1109/icarcv50220.2020.9305328" @default.
- W3119787422 hasPublicationYear "2020" @default.
- W3119787422 type Work @default.
- W3119787422 sameAs 3119787422 @default.
- W3119787422 citedByCount "1" @default.
- W3119787422 countsByYear W31197874222022 @default.
- W3119787422 crossrefType "proceedings-article" @default.
- W3119787422 hasAuthorship W3119787422A5003475208 @default.
- W3119787422 hasAuthorship W3119787422A5075545604 @default.
- W3119787422 hasAuthorship W3119787422A5088969354 @default.
- W3119787422 hasBestOaLocation W31197874222 @default.
- W3119787422 hasConcept C107673813 @default.
- W3119787422 hasConcept C108583219 @default.
- W3119787422 hasConcept C119857082 @default.
- W3119787422 hasConcept C127413603 @default.
- W3119787422 hasConcept C13280743 @default.
- W3119787422 hasConcept C153180895 @default.
- W3119787422 hasConcept C154945302 @default.
- W3119787422 hasConcept C160234255 @default.
- W3119787422 hasConcept C160331591 @default.
- W3119787422 hasConcept C170154142 @default.
- W3119787422 hasConcept C187691185 @default.
- W3119787422 hasConcept C19966478 @default.
- W3119787422 hasConcept C205649164 @default.
- W3119787422 hasConcept C2776151529 @default.
- W3119787422 hasConcept C2776214188 @default.
- W3119787422 hasConcept C31972630 @default.
- W3119787422 hasConcept C33954974 @default.
- W3119787422 hasConcept C41008148 @default.
- W3119787422 hasConcept C57077369 @default.
- W3119787422 hasConcept C79403827 @default.
- W3119787422 hasConcept C82142266 @default.
- W3119787422 hasConcept C87833898 @default.
- W3119787422 hasConcept C90509273 @default.
- W3119787422 hasConceptScore W3119787422C107673813 @default.
- W3119787422 hasConceptScore W3119787422C108583219 @default.
- W3119787422 hasConceptScore W3119787422C119857082 @default.
- W3119787422 hasConceptScore W3119787422C127413603 @default.
- W3119787422 hasConceptScore W3119787422C13280743 @default.
- W3119787422 hasConceptScore W3119787422C153180895 @default.
- W3119787422 hasConceptScore W3119787422C154945302 @default.
- W3119787422 hasConceptScore W3119787422C160234255 @default.
- W3119787422 hasConceptScore W3119787422C160331591 @default.
- W3119787422 hasConceptScore W3119787422C170154142 @default.
- W3119787422 hasConceptScore W3119787422C187691185 @default.
- W3119787422 hasConceptScore W3119787422C19966478 @default.
- W3119787422 hasConceptScore W3119787422C205649164 @default.
- W3119787422 hasConceptScore W3119787422C2776151529 @default.
- W3119787422 hasConceptScore W3119787422C2776214188 @default.
- W3119787422 hasConceptScore W3119787422C31972630 @default.
- W3119787422 hasConceptScore W3119787422C33954974 @default.
- W3119787422 hasConceptScore W3119787422C41008148 @default.
- W3119787422 hasConceptScore W3119787422C57077369 @default.
- W3119787422 hasConceptScore W3119787422C79403827 @default.
- W3119787422 hasConceptScore W3119787422C82142266 @default.
- W3119787422 hasConceptScore W3119787422C87833898 @default.
- W3119787422 hasConceptScore W3119787422C90509273 @default.
- W3119787422 hasLocation W31197874221 @default.
- W3119787422 hasLocation W31197874222 @default.
- W3119787422 hasLocation W31197874223 @default.
- W3119787422 hasOpenAccess W3119787422 @default.
- W3119787422 hasPrimaryLocation W31197874221 @default.