Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119902693> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3119902693 endingPage "6572" @default.
- W3119902693 startingPage "6559" @default.
- W3119902693 abstract "The probability distributions that statistical methods use to represent uncertainty fail to capture all of the uncertainty that may be relevant to decision making. A simple way to adjust probability distributions for the uncertainty not represented in their models is to average the distributions with a uniform distribution or another distribution of maximum uncertainty. A decision-theoretic framework leads to averaging the distributions by taking the means of the logit transforms of the probabilities. That method does not prevent convergence to the truth, as does taking the means of the probabilities themselves. The mean-logit approach to moderating distributions is applied to natural language processing performed by a deep neural network." @default.
- W3119902693 created "2021-01-18" @default.
- W3119902693 creator A5038684006 @default.
- W3119902693 date "2021-01-04" @default.
- W3119902693 modified "2023-10-16" @default.
- W3119902693 title "Moderating probability distributions for unrepresented uncertainty: Application to sentiment analysis via deep learning" @default.
- W3119902693 cites W1071598686 @default.
- W3119902693 cites W2009660843 @default.
- W3119902693 cites W2019291952 @default.
- W3119902693 cites W2036376268 @default.
- W3119902693 cites W2059724699 @default.
- W3119902693 cites W2124970707 @default.
- W3119902693 cites W2144127426 @default.
- W3119902693 cites W2149570649 @default.
- W3119902693 cites W2155969596 @default.
- W3119902693 cites W2158275940 @default.
- W3119902693 cites W2306941105 @default.
- W3119902693 cites W2507280432 @default.
- W3119902693 cites W2522481913 @default.
- W3119902693 cites W2531970172 @default.
- W3119902693 cites W2604444602 @default.
- W3119902693 cites W2765369538 @default.
- W3119902693 cites W2782452885 @default.
- W3119902693 cites W2890657944 @default.
- W3119902693 cites W2915161943 @default.
- W3119902693 cites W2916284929 @default.
- W3119902693 cites W3000271234 @default.
- W3119902693 cites W3040851791 @default.
- W3119902693 cites W3098949126 @default.
- W3119902693 cites W4299551239 @default.
- W3119902693 doi "https://doi.org/10.1080/03610926.2020.1863988" @default.
- W3119902693 hasPublicationYear "2021" @default.
- W3119902693 type Work @default.
- W3119902693 sameAs 3119902693 @default.
- W3119902693 citedByCount "2" @default.
- W3119902693 countsByYear W31199026932022 @default.
- W3119902693 crossrefType "journal-article" @default.
- W3119902693 hasAuthorship W3119902693A5038684006 @default.
- W3119902693 hasBestOaLocation W31199026932 @default.
- W3119902693 hasConcept C105795698 @default.
- W3119902693 hasConcept C111472728 @default.
- W3119902693 hasConcept C138885662 @default.
- W3119902693 hasConcept C140331021 @default.
- W3119902693 hasConcept C149441793 @default.
- W3119902693 hasConcept C149782125 @default.
- W3119902693 hasConcept C154945302 @default.
- W3119902693 hasConcept C162324750 @default.
- W3119902693 hasConcept C2777303404 @default.
- W3119902693 hasConcept C2780586882 @default.
- W3119902693 hasConcept C33923547 @default.
- W3119902693 hasConcept C41008148 @default.
- W3119902693 hasConcept C50522688 @default.
- W3119902693 hasConceptScore W3119902693C105795698 @default.
- W3119902693 hasConceptScore W3119902693C111472728 @default.
- W3119902693 hasConceptScore W3119902693C138885662 @default.
- W3119902693 hasConceptScore W3119902693C140331021 @default.
- W3119902693 hasConceptScore W3119902693C149441793 @default.
- W3119902693 hasConceptScore W3119902693C149782125 @default.
- W3119902693 hasConceptScore W3119902693C154945302 @default.
- W3119902693 hasConceptScore W3119902693C162324750 @default.
- W3119902693 hasConceptScore W3119902693C2777303404 @default.
- W3119902693 hasConceptScore W3119902693C2780586882 @default.
- W3119902693 hasConceptScore W3119902693C33923547 @default.
- W3119902693 hasConceptScore W3119902693C41008148 @default.
- W3119902693 hasConceptScore W3119902693C50522688 @default.
- W3119902693 hasFunder F4320334593 @default.
- W3119902693 hasIssue "19" @default.
- W3119902693 hasLocation W31199026931 @default.
- W3119902693 hasLocation W31199026932 @default.
- W3119902693 hasLocation W31199026933 @default.
- W3119902693 hasLocation W31199026934 @default.
- W3119902693 hasOpenAccess W3119902693 @default.
- W3119902693 hasPrimaryLocation W31199026931 @default.
- W3119902693 hasRelatedWork W1887191277 @default.
- W3119902693 hasRelatedWork W2018619927 @default.
- W3119902693 hasRelatedWork W2119158312 @default.
- W3119902693 hasRelatedWork W2145256004 @default.
- W3119902693 hasRelatedWork W2334954212 @default.
- W3119902693 hasRelatedWork W2552050053 @default.
- W3119902693 hasRelatedWork W2964285269 @default.
- W3119902693 hasRelatedWork W3124776653 @default.
- W3119902693 hasRelatedWork W4235288607 @default.
- W3119902693 hasRelatedWork W4238075012 @default.
- W3119902693 hasVolume "51" @default.
- W3119902693 isParatext "false" @default.
- W3119902693 isRetracted "false" @default.
- W3119902693 magId "3119902693" @default.
- W3119902693 workType "article" @default.