Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119906075> ?p ?o ?g. }
- W3119906075 abstract "We present an exact analytical solution to the problem of shear dispersion given a general initial condition. The solution is expressed as an infinite series expansion involving Mathieu functions and their eigenvalues. The eigenvalue system depends on the imaginary parameter $q=2ik$Pe, with $k$ the wavenumber that determines the tracer scale in the initial condition and Pe the Peclet number. Solutions are valid for all Pe, $t>0$, and $k>0$ except at specific values of $q=q_{ell}^{EP}$ called Exceptional Points (EPs), the first occurring at $q_{0}^{EP}approx1.468i$. For values of $q lessapprox 1.468i$, all the eigenvalues are real, different and eigenfunctions decay with time, thus shear dispersion can be represented as a diffusive process. For values of $q gtrapprox 1.468i$, pairs of eigenvalues coalesce at EPs becoming complex conjugates, the eigenfunctions propagate and decay with time, and so shear dispersion is no longer a purely diffusive process. The limit $qrightarrow0$ is approached by the small Peclet number limit for all finite $k>0$, or equally by the large Peclet number limit as long as $2k ll 1/$Pe. The latter implies $krightarrow0$, strong separation of scales between the tracer and flow. The limit $qrightarrowinfty$ results from large Peclet number for any $k>0$, or from large $k$ and non-vanishing Pe. We derive an exact closure that is continuous in wavenumber space. At small $q$, the closure approaches a diffusion operator with an effective diffusivity proportional to $U_0^2/kappa$, for flow speed $U_0$ and diffusivity $kappa$. At large $q$, the closure approaches the sum of an advection operator plus a half-derivative operator (differential operator of fractional order), the latter with coefficient proportional to $sqrt{kappa U_0}$." @default.
- W3119906075 created "2021-01-18" @default.
- W3119906075 creator A5017258584 @default.
- W3119906075 creator A5072359304 @default.
- W3119906075 date "2021-01-14" @default.
- W3119906075 modified "2023-09-27" @default.
- W3119906075 title "An exact solution to dispersion of a passive scalar by a periodic shear flow" @default.
- W3119906075 cites W1547666981 @default.
- W3119906075 cites W1578004187 @default.
- W3119906075 cites W1605182429 @default.
- W3119906075 cites W1648446191 @default.
- W3119906075 cites W1965419874 @default.
- W3119906075 cites W1972134132 @default.
- W3119906075 cites W1996818420 @default.
- W3119906075 cites W2008481796 @default.
- W3119906075 cites W2013380149 @default.
- W3119906075 cites W2053023596 @default.
- W3119906075 cites W2054169293 @default.
- W3119906075 cites W2067123857 @default.
- W3119906075 cites W2075217737 @default.
- W3119906075 cites W2093820071 @default.
- W3119906075 cites W2093931887 @default.
- W3119906075 cites W2096359889 @default.
- W3119906075 cites W2100767158 @default.
- W3119906075 cites W2125877628 @default.
- W3119906075 cites W2127150857 @default.
- W3119906075 cites W2144636071 @default.
- W3119906075 cites W2153062908 @default.
- W3119906075 cites W2166080990 @default.
- W3119906075 cites W2171215875 @default.
- W3119906075 cites W2175269597 @default.
- W3119906075 cites W2224536239 @default.
- W3119906075 cites W2259227674 @default.
- W3119906075 cites W2328821220 @default.
- W3119906075 cites W2908266731 @default.
- W3119906075 cites W2917740568 @default.
- W3119906075 cites W2982546823 @default.
- W3119906075 cites W3047153702 @default.
- W3119906075 cites W3098241049 @default.
- W3119906075 cites W654430102 @default.
- W3119906075 cites W2167096537 @default.
- W3119906075 hasPublicationYear "2021" @default.
- W3119906075 type Work @default.
- W3119906075 sameAs 3119906075 @default.
- W3119906075 citedByCount "0" @default.
- W3119906075 crossrefType "posted-content" @default.
- W3119906075 hasAuthorship W3119906075A5017258584 @default.
- W3119906075 hasAuthorship W3119906075A5072359304 @default.
- W3119906075 hasConcept C121130766 @default.
- W3119906075 hasConcept C121332964 @default.
- W3119906075 hasConcept C128803854 @default.
- W3119906075 hasConcept C134306372 @default.
- W3119906075 hasConcept C135768490 @default.
- W3119906075 hasConcept C158693339 @default.
- W3119906075 hasConcept C205684552 @default.
- W3119906075 hasConcept C2524010 @default.
- W3119906075 hasConcept C33923547 @default.
- W3119906075 hasConcept C37668627 @default.
- W3119906075 hasConcept C37914503 @default.
- W3119906075 hasConcept C520416788 @default.
- W3119906075 hasConcept C57691317 @default.
- W3119906075 hasConcept C57879066 @default.
- W3119906075 hasConcept C62520636 @default.
- W3119906075 hasConcept C74650414 @default.
- W3119906075 hasConceptScore W3119906075C121130766 @default.
- W3119906075 hasConceptScore W3119906075C121332964 @default.
- W3119906075 hasConceptScore W3119906075C128803854 @default.
- W3119906075 hasConceptScore W3119906075C134306372 @default.
- W3119906075 hasConceptScore W3119906075C135768490 @default.
- W3119906075 hasConceptScore W3119906075C158693339 @default.
- W3119906075 hasConceptScore W3119906075C205684552 @default.
- W3119906075 hasConceptScore W3119906075C2524010 @default.
- W3119906075 hasConceptScore W3119906075C33923547 @default.
- W3119906075 hasConceptScore W3119906075C37668627 @default.
- W3119906075 hasConceptScore W3119906075C37914503 @default.
- W3119906075 hasConceptScore W3119906075C520416788 @default.
- W3119906075 hasConceptScore W3119906075C57691317 @default.
- W3119906075 hasConceptScore W3119906075C57879066 @default.
- W3119906075 hasConceptScore W3119906075C62520636 @default.
- W3119906075 hasConceptScore W3119906075C74650414 @default.
- W3119906075 hasLocation W31199060751 @default.
- W3119906075 hasOpenAccess W3119906075 @default.
- W3119906075 hasPrimaryLocation W31199060751 @default.
- W3119906075 hasRelatedWork W1573454793 @default.
- W3119906075 hasRelatedWork W1603139494 @default.
- W3119906075 hasRelatedWork W1999772998 @default.
- W3119906075 hasRelatedWork W2014926820 @default.
- W3119906075 hasRelatedWork W2029874380 @default.
- W3119906075 hasRelatedWork W2032902202 @default.
- W3119906075 hasRelatedWork W2042989087 @default.
- W3119906075 hasRelatedWork W2091254711 @default.
- W3119906075 hasRelatedWork W2113397364 @default.
- W3119906075 hasRelatedWork W2150017796 @default.
- W3119906075 hasRelatedWork W2164829730 @default.
- W3119906075 hasRelatedWork W2792025760 @default.
- W3119906075 hasRelatedWork W2950494827 @default.
- W3119906075 hasRelatedWork W2971590691 @default.
- W3119906075 hasRelatedWork W3096663857 @default.
- W3119906075 hasRelatedWork W3099313982 @default.
- W3119906075 hasRelatedWork W3103415773 @default.