Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119935369> ?p ?o ?g. }
- W3119935369 endingPage "551" @default.
- W3119935369 startingPage "529" @default.
- W3119935369 abstract "Abstract The Groningen gas field in the Netherlands is experiencing induced seismicity as a result of ongoing depletion. The physical mechanisms that control seismicity have been studied through rock mechanical experiments and combined physical-statistical models to support development of a framework to forecast induced-seismicity risks. To investigate whether machine learning techniques such as Random Forests and Support Vector Machines bring new insights into forecasts of induced seismicity rates in space and time, a pipeline is designed that extends time-series analysis methods to a spatiotemporal framework with a factorial setup, which allows probing a large parameter space of plausible modelling assumptions, followed by a statistical meta-analysis to account for the intrinsic uncertainties in subsurface data and to ensure statistical significance and robustness of results. The pipeline includes model validation using e.g. likelihood ratio tests against average depletion thickness and strain thickness baselines to establish whether the models have statistically significant forecasting power. The methodology is applied to forecast seismicity for two distinctly different gas production scenarios. Results show that seismicity forecasts generated using Support Vector Machines significantly outperform beforementioned baselines. Forecasts from the method hint at decreasing seismicity rates within the next 5 years, in a conservative production scenario, and no such decrease in a higher depletion scenario, although due to the small effective sample size no statistically solid statement of this kind can be made. The presented approach can be used to make forecasts beyond the investigated 5-years period, although this requires addition of limited physics-based constraints to avoid unphysical forecasts." @default.
- W3119935369 created "2021-01-18" @default.
- W3119935369 creator A5012578577 @default.
- W3119935369 creator A5026948462 @default.
- W3119935369 creator A5035360152 @default.
- W3119935369 creator A5040401107 @default.
- W3119935369 creator A5041470075 @default.
- W3119935369 creator A5054961752 @default.
- W3119935369 creator A5059053964 @default.
- W3119935369 creator A5061220928 @default.
- W3119935369 creator A5071317118 @default.
- W3119935369 creator A5076492850 @default.
- W3119935369 creator A5081354005 @default.
- W3119935369 creator A5089240717 @default.
- W3119935369 date "2021-01-03" @default.
- W3119935369 modified "2023-09-23" @default.
- W3119935369 title "Using machine learning for model benchmarking and forecasting of depletion-induced seismicity in the Groningen gas field" @default.
- W3119935369 cites W1690274101 @default.
- W3119935369 cites W1981083813 @default.
- W3119935369 cites W2012389433 @default.
- W3119935369 cites W2012852466 @default.
- W3119935369 cites W2016424696 @default.
- W3119935369 cites W2023196525 @default.
- W3119935369 cites W2040103897 @default.
- W3119935369 cites W2050127080 @default.
- W3119935369 cites W2077990646 @default.
- W3119935369 cites W2102807025 @default.
- W3119935369 cites W2106525823 @default.
- W3119935369 cites W2109535573 @default.
- W3119935369 cites W2125847307 @default.
- W3119935369 cites W2138422095 @default.
- W3119935369 cites W2141119792 @default.
- W3119935369 cites W2154788232 @default.
- W3119935369 cites W2156665896 @default.
- W3119935369 cites W2177694324 @default.
- W3119935369 cites W2226036765 @default.
- W3119935369 cites W2298347151 @default.
- W3119935369 cites W2336766382 @default.
- W3119935369 cites W2337082154 @default.
- W3119935369 cites W2413122677 @default.
- W3119935369 cites W2510620627 @default.
- W3119935369 cites W2624637765 @default.
- W3119935369 cites W2734256217 @default.
- W3119935369 cites W2737268635 @default.
- W3119935369 cites W2762188546 @default.
- W3119935369 cites W2762410434 @default.
- W3119935369 cites W2766908073 @default.
- W3119935369 cites W2767452797 @default.
- W3119935369 cites W2767763462 @default.
- W3119935369 cites W2782714865 @default.
- W3119935369 cites W2784379176 @default.
- W3119935369 cites W2787894218 @default.
- W3119935369 cites W2789632753 @default.
- W3119935369 cites W2790459179 @default.
- W3119935369 cites W2791652788 @default.
- W3119935369 cites W2793055257 @default.
- W3119935369 cites W2793431973 @default.
- W3119935369 cites W2794778778 @default.
- W3119935369 cites W2801315467 @default.
- W3119935369 cites W2801490189 @default.
- W3119935369 cites W2807350113 @default.
- W3119935369 cites W2888770834 @default.
- W3119935369 cites W2923222994 @default.
- W3119935369 cites W2963008249 @default.
- W3119935369 cites W2978465810 @default.
- W3119935369 cites W3026667335 @default.
- W3119935369 cites W3099836851 @default.
- W3119935369 cites W3102027041 @default.
- W3119935369 cites W3122267197 @default.
- W3119935369 cites W3122992882 @default.
- W3119935369 cites W3124928229 @default.
- W3119935369 cites W4239510810 @default.
- W3119935369 doi "https://doi.org/10.1007/s10596-020-10023-0" @default.
- W3119935369 hasPublicationYear "2021" @default.
- W3119935369 type Work @default.
- W3119935369 sameAs 3119935369 @default.
- W3119935369 citedByCount "3" @default.
- W3119935369 countsByYear W31199353692022 @default.
- W3119935369 countsByYear W31199353692023 @default.
- W3119935369 crossrefType "journal-article" @default.
- W3119935369 hasAuthorship W3119935369A5012578577 @default.
- W3119935369 hasAuthorship W3119935369A5026948462 @default.
- W3119935369 hasAuthorship W3119935369A5035360152 @default.
- W3119935369 hasAuthorship W3119935369A5040401107 @default.
- W3119935369 hasAuthorship W3119935369A5041470075 @default.
- W3119935369 hasAuthorship W3119935369A5054961752 @default.
- W3119935369 hasAuthorship W3119935369A5059053964 @default.
- W3119935369 hasAuthorship W3119935369A5061220928 @default.
- W3119935369 hasAuthorship W3119935369A5071317118 @default.
- W3119935369 hasAuthorship W3119935369A5076492850 @default.
- W3119935369 hasAuthorship W3119935369A5081354005 @default.
- W3119935369 hasAuthorship W3119935369A5089240717 @default.
- W3119935369 hasBestOaLocation W31199353691 @default.
- W3119935369 hasConcept C104317684 @default.
- W3119935369 hasConcept C119857082 @default.
- W3119935369 hasConcept C12267149 @default.
- W3119935369 hasConcept C124101348 @default.
- W3119935369 hasConcept C127313418 @default.