Matches in SemOpenAlex for { <https://semopenalex.org/work/W3119989842> ?p ?o ?g. }
- W3119989842 endingPage "326" @default.
- W3119989842 startingPage "311" @default.
- W3119989842 abstract "We develop a method for analyzing multivariate time series using topological data analysis (TDA) methods. The proposed methodology involves converting the multivariate time series to point cloud data, calculating Wasserstein distances between the persistence diagrams and using the k-nearest neighbours algorithm (k-NN) for supervised machine learning. Two methods (symmetry-breaking and anchor points) are also introduced to enable TDA to better analyze data with heterogeneous features that are sensitive to translation, rotation or choice of coordinates. We apply our methods to room occupancy detection based on 5 time-dependent variables (temperature, humidity, light, CO2 and humidity ratio). Experimental results show that topological methods are effective in predicting room occupancy during a time window. We also apply our methods to an Activity Recognition dataset and obtained good results." @default.
- W3119989842 created "2021-01-18" @default.
- W3119989842 creator A5018703109 @default.
- W3119989842 creator A5020100285 @default.
- W3119989842 date "2021-01-11" @default.
- W3119989842 modified "2023-10-11" @default.
- W3119989842 title "Topological machine learning for multivariate time series" @default.
- W3119989842 cites W1549386224 @default.
- W3119989842 cites W177922316 @default.
- W3119989842 cites W1798863697 @default.
- W3119989842 cites W1880168459 @default.
- W3119989842 cites W1974376512 @default.
- W3119989842 cites W1980059182 @default.
- W3119989842 cites W1984489625 @default.
- W3119989842 cites W1989757660 @default.
- W3119989842 cites W1999206758 @default.
- W3119989842 cites W2034097113 @default.
- W3119989842 cites W2037613900 @default.
- W3119989842 cites W2037817770 @default.
- W3119989842 cites W2041343622 @default.
- W3119989842 cites W2064020260 @default.
- W3119989842 cites W2071391326 @default.
- W3119989842 cites W2085477622 @default.
- W3119989842 cites W2093446113 @default.
- W3119989842 cites W2096736341 @default.
- W3119989842 cites W2122101130 @default.
- W3119989842 cites W2126424784 @default.
- W3119989842 cites W2129737628 @default.
- W3119989842 cites W2143668817 @default.
- W3119989842 cites W2144044408 @default.
- W3119989842 cites W2148835685 @default.
- W3119989842 cites W2154187696 @default.
- W3119989842 cites W2182886880 @default.
- W3119989842 cites W2223140295 @default.
- W3119989842 cites W2405281613 @default.
- W3119989842 cites W2469516269 @default.
- W3119989842 cites W2498184556 @default.
- W3119989842 cites W2557239766 @default.
- W3119989842 cites W2597495304 @default.
- W3119989842 cites W2606396930 @default.
- W3119989842 cites W2733638363 @default.
- W3119989842 cites W2794066488 @default.
- W3119989842 cites W2908344088 @default.
- W3119989842 cites W2963684499 @default.
- W3119989842 cites W2963883198 @default.
- W3119989842 cites W2964311945 @default.
- W3119989842 cites W2984249386 @default.
- W3119989842 cites W3105669717 @default.
- W3119989842 cites W3122966451 @default.
- W3119989842 cites W4233690291 @default.
- W3119989842 cites W4243631322 @default.
- W3119989842 doi "https://doi.org/10.1080/0952813x.2021.1871971" @default.
- W3119989842 hasPublicationYear "2021" @default.
- W3119989842 type Work @default.
- W3119989842 sameAs 3119989842 @default.
- W3119989842 citedByCount "8" @default.
- W3119989842 countsByYear W31199898422020 @default.
- W3119989842 countsByYear W31199898422021 @default.
- W3119989842 countsByYear W31199898422022 @default.
- W3119989842 countsByYear W31199898422023 @default.
- W3119989842 crossrefType "journal-article" @default.
- W3119989842 hasAuthorship W3119989842A5018703109 @default.
- W3119989842 hasAuthorship W3119989842A5020100285 @default.
- W3119989842 hasBestOaLocation W31199898422 @default.
- W3119989842 hasConcept C104317684 @default.
- W3119989842 hasConcept C105580179 @default.
- W3119989842 hasConcept C111919701 @default.
- W3119989842 hasConcept C11413529 @default.
- W3119989842 hasConcept C119857082 @default.
- W3119989842 hasConcept C124101348 @default.
- W3119989842 hasConcept C131979681 @default.
- W3119989842 hasConcept C143724316 @default.
- W3119989842 hasConcept C149364088 @default.
- W3119989842 hasConcept C151406439 @default.
- W3119989842 hasConcept C151730666 @default.
- W3119989842 hasConcept C154945302 @default.
- W3119989842 hasConcept C161584116 @default.
- W3119989842 hasConcept C185592680 @default.
- W3119989842 hasConcept C2776477805 @default.
- W3119989842 hasConcept C2778751112 @default.
- W3119989842 hasConcept C41008148 @default.
- W3119989842 hasConcept C55493867 @default.
- W3119989842 hasConcept C74050887 @default.
- W3119989842 hasConcept C86803240 @default.
- W3119989842 hasConceptScore W3119989842C104317684 @default.
- W3119989842 hasConceptScore W3119989842C105580179 @default.
- W3119989842 hasConceptScore W3119989842C111919701 @default.
- W3119989842 hasConceptScore W3119989842C11413529 @default.
- W3119989842 hasConceptScore W3119989842C119857082 @default.
- W3119989842 hasConceptScore W3119989842C124101348 @default.
- W3119989842 hasConceptScore W3119989842C131979681 @default.
- W3119989842 hasConceptScore W3119989842C143724316 @default.
- W3119989842 hasConceptScore W3119989842C149364088 @default.
- W3119989842 hasConceptScore W3119989842C151406439 @default.
- W3119989842 hasConceptScore W3119989842C151730666 @default.
- W3119989842 hasConceptScore W3119989842C154945302 @default.
- W3119989842 hasConceptScore W3119989842C161584116 @default.
- W3119989842 hasConceptScore W3119989842C185592680 @default.