Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120051936> ?p ?o ?g. }
- W3120051936 endingPage "4827" @default.
- W3120051936 startingPage "4817" @default.
- W3120051936 abstract "Compressive covariance estimation has arisen as a class of techniques whose aim is to obtain second-order statistics of stochastic processes from compressive measurements. Recently, these methods have been used in various image processing and communications applications, including denoising, spectrum sensing, and compression. Notice that estimating the covariance matrix from compressive samples leads to ill-posed minimizations with severe performance loss at high compression rates. In this regard, a regularization term is typically aggregated to the cost function to consider prior information about a particular property of the covariance matrix. Hence, this paper proposes an algorithm based on the projected gradient method to recover low-rank or Toeplitz approximations of the covariance matrix from compressive measurements. The proposed algorithm divides the compressive measurements into data subsets projected onto different subspaces and accurately estimates the covariance matrix by solving a single optimization problem assuming that each data subset contains an approximation of the signal statistics. Furthermore, gradient filtering is included at every iteration of the proposed algorithm to minimize the estimation error. The error induced by the proposed splitting approach is analytically derived along with the convergence guarantees of the proposed method. The proposed algorithm estimates the covariance matrix of hyperspectral images from synthetic and real compressive samples. Extensive simulations show that the proposed algorithm can effectively recover the covariance matrix of hyperspectral images from compressive measurements with high compression ratios ( 8-15% approx) in noisy scenarios. Moreover, simulations and theoretical results show that the filtering step reduces the recovery error up to twice the number of eigenvectors. Finally, an optical implementation is proposed, and real measurements are used to validate the theoretical findings." @default.
- W3120051936 created "2021-01-18" @default.
- W3120051936 creator A5009365999 @default.
- W3120051936 creator A5059775092 @default.
- W3120051936 creator A5081714132 @default.
- W3120051936 creator A5090211271 @default.
- W3120051936 date "2022-01-01" @default.
- W3120051936 modified "2023-09-24" @default.
- W3120051936 title "Covariance Estimation From Compressive Data Partitions Using a Projected Gradient-Based Algorithm" @default.
- W3120051936 cites W1981939910 @default.
- W3120051936 cites W1991799212 @default.
- W3120051936 cites W1992400371 @default.
- W3120051936 cites W2002498099 @default.
- W3120051936 cites W2002635597 @default.
- W3120051936 cites W2012528387 @default.
- W3120051936 cites W2014980207 @default.
- W3120051936 cites W2040367593 @default.
- W3120051936 cites W2043441451 @default.
- W3120051936 cites W2056672982 @default.
- W3120051936 cites W2069041187 @default.
- W3120051936 cites W2084591647 @default.
- W3120051936 cites W2104266187 @default.
- W3120051936 cites W2104453356 @default.
- W3120051936 cites W2108763700 @default.
- W3120051936 cites W2119667497 @default.
- W3120051936 cites W2133105246 @default.
- W3120051936 cites W2149631607 @default.
- W3120051936 cites W2155599972 @default.
- W3120051936 cites W2169872334 @default.
- W3120051936 cites W2170608472 @default.
- W3120051936 cites W2204858460 @default.
- W3120051936 cites W2211589247 @default.
- W3120051936 cites W2286274660 @default.
- W3120051936 cites W2342181855 @default.
- W3120051936 cites W2511212532 @default.
- W3120051936 cites W2511401065 @default.
- W3120051936 cites W2520594112 @default.
- W3120051936 cites W2562346436 @default.
- W3120051936 cites W2932937261 @default.
- W3120051936 cites W2963297687 @default.
- W3120051936 cites W2969132644 @default.
- W3120051936 cites W2995172794 @default.
- W3120051936 cites W2999673618 @default.
- W3120051936 cites W3125408626 @default.
- W3120051936 cites W3133114607 @default.
- W3120051936 cites W3157555089 @default.
- W3120051936 cites W38565172 @default.
- W3120051936 cites W4250955649 @default.
- W3120051936 cites W4292023222 @default.
- W3120051936 doi "https://doi.org/10.1109/tip.2022.3187285" @default.
- W3120051936 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35830408" @default.
- W3120051936 hasPublicationYear "2022" @default.
- W3120051936 type Work @default.
- W3120051936 sameAs 3120051936 @default.
- W3120051936 citedByCount "1" @default.
- W3120051936 countsByYear W31200519362022 @default.
- W3120051936 crossrefType "journal-article" @default.
- W3120051936 hasAuthorship W3120051936A5009365999 @default.
- W3120051936 hasAuthorship W3120051936A5059775092 @default.
- W3120051936 hasAuthorship W3120051936A5081714132 @default.
- W3120051936 hasAuthorship W3120051936A5090211271 @default.
- W3120051936 hasBestOaLocation W31200519362 @default.
- W3120051936 hasConcept C105795698 @default.
- W3120051936 hasConcept C11413529 @default.
- W3120051936 hasConcept C124851039 @default.
- W3120051936 hasConcept C126255220 @default.
- W3120051936 hasConcept C137250428 @default.
- W3120051936 hasConcept C154945302 @default.
- W3120051936 hasConcept C159078339 @default.
- W3120051936 hasConcept C178650346 @default.
- W3120051936 hasConcept C180877172 @default.
- W3120051936 hasConcept C185142706 @default.
- W3120051936 hasConcept C33923547 @default.
- W3120051936 hasConcept C41008148 @default.
- W3120051936 hasConceptScore W3120051936C105795698 @default.
- W3120051936 hasConceptScore W3120051936C11413529 @default.
- W3120051936 hasConceptScore W3120051936C124851039 @default.
- W3120051936 hasConceptScore W3120051936C126255220 @default.
- W3120051936 hasConceptScore W3120051936C137250428 @default.
- W3120051936 hasConceptScore W3120051936C154945302 @default.
- W3120051936 hasConceptScore W3120051936C159078339 @default.
- W3120051936 hasConceptScore W3120051936C178650346 @default.
- W3120051936 hasConceptScore W3120051936C180877172 @default.
- W3120051936 hasConceptScore W3120051936C185142706 @default.
- W3120051936 hasConceptScore W3120051936C33923547 @default.
- W3120051936 hasConceptScore W3120051936C41008148 @default.
- W3120051936 hasFunder F4320327969 @default.
- W3120051936 hasLocation W31200519361 @default.
- W3120051936 hasLocation W31200519362 @default.
- W3120051936 hasLocation W31200519363 @default.
- W3120051936 hasOpenAccess W3120051936 @default.
- W3120051936 hasPrimaryLocation W31200519361 @default.
- W3120051936 hasRelatedWork W1973215133 @default.
- W3120051936 hasRelatedWork W1976318097 @default.
- W3120051936 hasRelatedWork W1987404909 @default.
- W3120051936 hasRelatedWork W2018001152 @default.
- W3120051936 hasRelatedWork W2035323049 @default.
- W3120051936 hasRelatedWork W2099216015 @default.