Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120062910> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3120062910 abstract "The primitive way to do away with weeds was to remove them manually. As time went by, the farmers started using herbicides to kill the weeds. The excessive usage of weedicides can cause severe health problems to the agricultural workers/farmers, can also contaminate the soil and the water. New methods have to be introduced to reduce the usage of weedicide. Even after the advancement in research, a lot of readily available solutions are not being implemented at the grass-root level. Addressing the problem, a better solution has been proposed to minimize the usage of the herbicide by classifying the plant images into the weed and the crop for selective spraying of the herbicide. The first step towards it is to differentiate between the crops and the weed. Image Classification Technique has been implemented using the Deep Learning function. A maximum efficiency of 96.3% was achieved with just 250 images of each plant in the dataset. The proposed model may easily be dumped in the Raspberry Pi and the selective spraying may be performed with the help of an attached sprayer. This setup may be installed on a tractor or a drone for real-time implementation." @default.
- W3120062910 created "2021-01-18" @default.
- W3120062910 creator A5001676860 @default.
- W3120062910 creator A5046532943 @default.
- W3120062910 creator A5063417404 @default.
- W3120062910 creator A5070089781 @default.
- W3120062910 creator A5071124510 @default.
- W3120062910 date "2020-11-06" @default.
- W3120062910 modified "2023-10-01" @default.
- W3120062910 title "Agriculture Automation using Deep Learning Methods Implemented using Keras" @default.
- W3120062910 cites W1976225812 @default.
- W3120062910 cites W2074370753 @default.
- W3120062910 cites W2439288545 @default.
- W3120062910 cites W2805267014 @default.
- W3120062910 cites W2940674944 @default.
- W3120062910 cites W3004192481 @default.
- W3120062910 doi "https://doi.org/10.1109/inocon50539.2020.9298415" @default.
- W3120062910 hasPublicationYear "2020" @default.
- W3120062910 type Work @default.
- W3120062910 sameAs 3120062910 @default.
- W3120062910 citedByCount "7" @default.
- W3120062910 countsByYear W31200629102021 @default.
- W3120062910 countsByYear W31200629102022 @default.
- W3120062910 countsByYear W31200629102023 @default.
- W3120062910 crossrefType "proceedings-article" @default.
- W3120062910 hasAuthorship W3120062910A5001676860 @default.
- W3120062910 hasAuthorship W3120062910A5046532943 @default.
- W3120062910 hasAuthorship W3120062910A5063417404 @default.
- W3120062910 hasAuthorship W3120062910A5070089781 @default.
- W3120062910 hasAuthorship W3120062910A5071124510 @default.
- W3120062910 hasConcept C108583219 @default.
- W3120062910 hasConcept C115901376 @default.
- W3120062910 hasConcept C118518473 @default.
- W3120062910 hasConcept C119857082 @default.
- W3120062910 hasConcept C127413603 @default.
- W3120062910 hasConcept C137580998 @default.
- W3120062910 hasConcept C154945302 @default.
- W3120062910 hasConcept C171146098 @default.
- W3120062910 hasConcept C18903297 @default.
- W3120062910 hasConcept C2775891814 @default.
- W3120062910 hasConcept C2778230297 @default.
- W3120062910 hasConcept C2780427559 @default.
- W3120062910 hasConcept C41008148 @default.
- W3120062910 hasConcept C6557445 @default.
- W3120062910 hasConcept C78519656 @default.
- W3120062910 hasConcept C86803240 @default.
- W3120062910 hasConcept C88463610 @default.
- W3120062910 hasConceptScore W3120062910C108583219 @default.
- W3120062910 hasConceptScore W3120062910C115901376 @default.
- W3120062910 hasConceptScore W3120062910C118518473 @default.
- W3120062910 hasConceptScore W3120062910C119857082 @default.
- W3120062910 hasConceptScore W3120062910C127413603 @default.
- W3120062910 hasConceptScore W3120062910C137580998 @default.
- W3120062910 hasConceptScore W3120062910C154945302 @default.
- W3120062910 hasConceptScore W3120062910C171146098 @default.
- W3120062910 hasConceptScore W3120062910C18903297 @default.
- W3120062910 hasConceptScore W3120062910C2775891814 @default.
- W3120062910 hasConceptScore W3120062910C2778230297 @default.
- W3120062910 hasConceptScore W3120062910C2780427559 @default.
- W3120062910 hasConceptScore W3120062910C41008148 @default.
- W3120062910 hasConceptScore W3120062910C6557445 @default.
- W3120062910 hasConceptScore W3120062910C78519656 @default.
- W3120062910 hasConceptScore W3120062910C86803240 @default.
- W3120062910 hasConceptScore W3120062910C88463610 @default.
- W3120062910 hasLocation W31200629101 @default.
- W3120062910 hasOpenAccess W3120062910 @default.
- W3120062910 hasPrimaryLocation W31200629101 @default.
- W3120062910 hasRelatedWork W2795261237 @default.
- W3120062910 hasRelatedWork W3014300295 @default.
- W3120062910 hasRelatedWork W3164822677 @default.
- W3120062910 hasRelatedWork W4223943233 @default.
- W3120062910 hasRelatedWork W4225161397 @default.
- W3120062910 hasRelatedWork W4312200629 @default.
- W3120062910 hasRelatedWork W4360585206 @default.
- W3120062910 hasRelatedWork W4364306694 @default.
- W3120062910 hasRelatedWork W4380075502 @default.
- W3120062910 hasRelatedWork W4380086463 @default.
- W3120062910 isParatext "false" @default.
- W3120062910 isRetracted "false" @default.
- W3120062910 magId "3120062910" @default.
- W3120062910 workType "article" @default.