Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120094890> ?p ?o ?g. }
- W3120094890 endingPage "8260" @default.
- W3120094890 startingPage "8249" @default.
- W3120094890 abstract "The detection of Thermal Power Plants (TPPs) is a meaningful task for remote sensing image interpretation. It is challenging due to the variations in appearance and complex structures. In this article, we propose a novel end-to-end detection framework for TPPs based on deep convolutional neural networks. Specifically, a large-scale TPPs Dataset for Detection (AIR-TPPDD) in remote sensing images is presented. AIR-TPPDD is collected from the Google Earth worldwide, and provides detailed annotations including names and locations. To the best of our knowledge, this is the first publicly available dataset for TPP detection. Then, based on Faster R-CNN, a saliency enhanced module is proposed to strengthen the ability in representing complex structure, as well as alleviate distractions in the background. In addition, we design a multi-scale feature module to adapt to the large size range of TPPs. Experiments show that the proposed method outperforms the state-of-the-art methods and achieves 76.7% mAP on the challenging AIR-TPPDD." @default.
- W3120094890 created "2021-01-18" @default.
- W3120094890 creator A5002110023 @default.
- W3120094890 creator A5005905514 @default.
- W3120094890 creator A5010776860 @default.
- W3120094890 creator A5053575928 @default.
- W3120094890 creator A5074960174 @default.
- W3120094890 date "2021-01-01" @default.
- W3120094890 modified "2023-10-16" @default.
- W3120094890 title "Thermal Power Plant Detection in Remote Sensing Images With Saliency Enhanced Feature Representation" @default.
- W3120094890 cites W123418247 @default.
- W3120094890 cites W1517086206 @default.
- W3120094890 cites W1536680647 @default.
- W3120094890 cites W1861492603 @default.
- W3120094890 cites W1872412942 @default.
- W3120094890 cites W1934890906 @default.
- W3120094890 cites W1965301399 @default.
- W3120094890 cites W1980038761 @default.
- W3120094890 cites W1994616650 @default.
- W3120094890 cites W2031489346 @default.
- W3120094890 cites W2032498155 @default.
- W3120094890 cites W2037954058 @default.
- W3120094890 cites W2059717829 @default.
- W3120094890 cites W2097117768 @default.
- W3120094890 cites W2108598243 @default.
- W3120094890 cites W2117301471 @default.
- W3120094890 cites W2128272608 @default.
- W3120094890 cites W2138046011 @default.
- W3120094890 cites W2183341477 @default.
- W3120094890 cites W2194775991 @default.
- W3120094890 cites W2211996548 @default.
- W3120094890 cites W2412782625 @default.
- W3120094890 cites W2508384486 @default.
- W3120094890 cites W2515357728 @default.
- W3120094890 cites W2556967412 @default.
- W3120094890 cites W2565639579 @default.
- W3120094890 cites W2583180462 @default.
- W3120094890 cites W2613718673 @default.
- W3120094890 cites W2625821768 @default.
- W3120094890 cites W2734629022 @default.
- W3120094890 cites W2763968347 @default.
- W3120094890 cites W2950637875 @default.
- W3120094890 cites W2955096879 @default.
- W3120094890 cites W2962749812 @default.
- W3120094890 cites W2963351448 @default.
- W3120094890 cites W2964194231 @default.
- W3120094890 cites W2964951804 @default.
- W3120094890 cites W2973071380 @default.
- W3120094890 cites W3092220690 @default.
- W3120094890 doi "https://doi.org/10.1109/access.2021.3049431" @default.
- W3120094890 hasPublicationYear "2021" @default.
- W3120094890 type Work @default.
- W3120094890 sameAs 3120094890 @default.
- W3120094890 citedByCount "2" @default.
- W3120094890 countsByYear W31200948902022 @default.
- W3120094890 countsByYear W31200948902023 @default.
- W3120094890 crossrefType "journal-article" @default.
- W3120094890 hasAuthorship W3120094890A5002110023 @default.
- W3120094890 hasAuthorship W3120094890A5005905514 @default.
- W3120094890 hasAuthorship W3120094890A5010776860 @default.
- W3120094890 hasAuthorship W3120094890A5053575928 @default.
- W3120094890 hasAuthorship W3120094890A5074960174 @default.
- W3120094890 hasBestOaLocation W31200948901 @default.
- W3120094890 hasConcept C108583219 @default.
- W3120094890 hasConcept C115961682 @default.
- W3120094890 hasConcept C127413603 @default.
- W3120094890 hasConcept C138885662 @default.
- W3120094890 hasConcept C153180895 @default.
- W3120094890 hasConcept C154945302 @default.
- W3120094890 hasConcept C17744445 @default.
- W3120094890 hasConcept C199539241 @default.
- W3120094890 hasConcept C201995342 @default.
- W3120094890 hasConcept C205649164 @default.
- W3120094890 hasConcept C2776151529 @default.
- W3120094890 hasConcept C2776359362 @default.
- W3120094890 hasConcept C2776401178 @default.
- W3120094890 hasConcept C2778755073 @default.
- W3120094890 hasConcept C2780451532 @default.
- W3120094890 hasConcept C31972630 @default.
- W3120094890 hasConcept C41008148 @default.
- W3120094890 hasConcept C41895202 @default.
- W3120094890 hasConcept C52622490 @default.
- W3120094890 hasConcept C58640448 @default.
- W3120094890 hasConcept C62649853 @default.
- W3120094890 hasConcept C81363708 @default.
- W3120094890 hasConcept C94625758 @default.
- W3120094890 hasConceptScore W3120094890C108583219 @default.
- W3120094890 hasConceptScore W3120094890C115961682 @default.
- W3120094890 hasConceptScore W3120094890C127413603 @default.
- W3120094890 hasConceptScore W3120094890C138885662 @default.
- W3120094890 hasConceptScore W3120094890C153180895 @default.
- W3120094890 hasConceptScore W3120094890C154945302 @default.
- W3120094890 hasConceptScore W3120094890C17744445 @default.
- W3120094890 hasConceptScore W3120094890C199539241 @default.
- W3120094890 hasConceptScore W3120094890C201995342 @default.
- W3120094890 hasConceptScore W3120094890C205649164 @default.
- W3120094890 hasConceptScore W3120094890C2776151529 @default.
- W3120094890 hasConceptScore W3120094890C2776359362 @default.