Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120105084> ?p ?o ?g. }
- W3120105084 endingPage "156" @default.
- W3120105084 startingPage "156" @default.
- W3120105084 abstract "Multi-class classification in imbalanced datasets is a challenging problem. In these cases, common validation metrics (such as accuracy or recall) are often not suitable. In many of these problems, often real-world problems related to health, some classification errors may be tolerated, whereas others are to be avoided completely. Therefore, a cost-sensitive variable selection procedure for building a Bayesian network classifier is proposed. In it, a flexible validation metric (cost/loss function) encoding the impact of the different classification errors is employed. Thus, the model is learned to optimize the a priori specified cost function. The proposed approach was applied to forecasting an air quality index using current levels of air pollutants and climatic variables from a highly imbalanced dataset. For this problem, the method yielded better results than other standard validation metrics in the less frequent class states. The possibility of fine-tuning the objective validation function can improve the prediction quality in imbalanced data or when asymmetric misclassification costs have to be considered." @default.
- W3120105084 created "2021-01-18" @default.
- W3120105084 creator A5046966649 @default.
- W3120105084 creator A5047732328 @default.
- W3120105084 date "2021-01-13" @default.
- W3120105084 modified "2023-09-26" @default.
- W3120105084 title "Cost-Sensitive Variable Selection for Multi-Class Imbalanced Datasets Using Bayesian Networks" @default.
- W3120105084 cites W1599585030 @default.
- W3120105084 cites W1626436981 @default.
- W3120105084 cites W1817561967 @default.
- W3120105084 cites W1901616594 @default.
- W3120105084 cites W2012754648 @default.
- W3120105084 cites W2015452969 @default.
- W3120105084 cites W2023639956 @default.
- W3120105084 cites W2024223694 @default.
- W3120105084 cites W2026527334 @default.
- W3120105084 cites W2032477387 @default.
- W3120105084 cites W2034409962 @default.
- W3120105084 cites W2050442480 @default.
- W3120105084 cites W2051786782 @default.
- W3120105084 cites W2073399879 @default.
- W3120105084 cites W2085186171 @default.
- W3120105084 cites W2090347203 @default.
- W3120105084 cites W2103614420 @default.
- W3120105084 cites W2108950639 @default.
- W3120105084 cites W2112081648 @default.
- W3120105084 cites W2128088446 @default.
- W3120105084 cites W2129473238 @default.
- W3120105084 cites W2144463230 @default.
- W3120105084 cites W2157598413 @default.
- W3120105084 cites W2271396433 @default.
- W3120105084 cites W2344014581 @default.
- W3120105084 cites W2562561690 @default.
- W3120105084 cites W2568027568 @default.
- W3120105084 cites W2744511114 @default.
- W3120105084 cites W2766146410 @default.
- W3120105084 cites W2767431004 @default.
- W3120105084 cites W2775751058 @default.
- W3120105084 cites W2778213743 @default.
- W3120105084 cites W2789613182 @default.
- W3120105084 cites W2791640723 @default.
- W3120105084 cites W2807754335 @default.
- W3120105084 cites W2996530853 @default.
- W3120105084 cites W3048567557 @default.
- W3120105084 cites W4230683138 @default.
- W3120105084 doi "https://doi.org/10.3390/math9020156" @default.
- W3120105084 hasPublicationYear "2021" @default.
- W3120105084 type Work @default.
- W3120105084 sameAs 3120105084 @default.
- W3120105084 citedByCount "2" @default.
- W3120105084 countsByYear W31201050842021 @default.
- W3120105084 countsByYear W31201050842022 @default.
- W3120105084 crossrefType "journal-article" @default.
- W3120105084 hasAuthorship W3120105084A5046966649 @default.
- W3120105084 hasAuthorship W3120105084A5047732328 @default.
- W3120105084 hasBestOaLocation W31201050841 @default.
- W3120105084 hasConcept C111472728 @default.
- W3120105084 hasConcept C119857082 @default.
- W3120105084 hasConcept C12267149 @default.
- W3120105084 hasConcept C124101348 @default.
- W3120105084 hasConcept C127413603 @default.
- W3120105084 hasConcept C138885662 @default.
- W3120105084 hasConcept C148483581 @default.
- W3120105084 hasConcept C154945302 @default.
- W3120105084 hasConcept C176217482 @default.
- W3120105084 hasConcept C21547014 @default.
- W3120105084 hasConcept C27181475 @default.
- W3120105084 hasConcept C33724603 @default.
- W3120105084 hasConcept C41008148 @default.
- W3120105084 hasConcept C52001869 @default.
- W3120105084 hasConcept C75553542 @default.
- W3120105084 hasConcept C95623464 @default.
- W3120105084 hasConceptScore W3120105084C111472728 @default.
- W3120105084 hasConceptScore W3120105084C119857082 @default.
- W3120105084 hasConceptScore W3120105084C12267149 @default.
- W3120105084 hasConceptScore W3120105084C124101348 @default.
- W3120105084 hasConceptScore W3120105084C127413603 @default.
- W3120105084 hasConceptScore W3120105084C138885662 @default.
- W3120105084 hasConceptScore W3120105084C148483581 @default.
- W3120105084 hasConceptScore W3120105084C154945302 @default.
- W3120105084 hasConceptScore W3120105084C176217482 @default.
- W3120105084 hasConceptScore W3120105084C21547014 @default.
- W3120105084 hasConceptScore W3120105084C27181475 @default.
- W3120105084 hasConceptScore W3120105084C33724603 @default.
- W3120105084 hasConceptScore W3120105084C41008148 @default.
- W3120105084 hasConceptScore W3120105084C52001869 @default.
- W3120105084 hasConceptScore W3120105084C75553542 @default.
- W3120105084 hasConceptScore W3120105084C95623464 @default.
- W3120105084 hasIssue "2" @default.
- W3120105084 hasLocation W31201050841 @default.
- W3120105084 hasLocation W31201050842 @default.
- W3120105084 hasOpenAccess W3120105084 @default.
- W3120105084 hasPrimaryLocation W31201050841 @default.
- W3120105084 hasRelatedWork W1506481126 @default.
- W3120105084 hasRelatedWork W2772902973 @default.
- W3120105084 hasRelatedWork W3105251098 @default.
- W3120105084 hasRelatedWork W3200179079 @default.
- W3120105084 hasRelatedWork W4212852473 @default.