Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120122555> ?p ?o ?g. }
- W3120122555 abstract "Abstract Background Malaria is a major cause of death in children under five years old in low- and middle-income countries such as Malawi. Accurate diagnosis and management of malaria can help reduce the global burden of childhood morbidity and mortality. Trained healthcare workers in rural health centers manage malaria with limited supplies of malarial diagnostic tests and drugs for treatment. A clinical decision support system that integrates predictive models to provide an accurate prediction of malaria based on clinical features could aid healthcare workers in the judicious use of testing and treatment. We developed Bayesian network (BN) models to predict the probability of malaria from clinical features and an illustrative decision tree to model the decision to use or not use a malaria rapid diagnostic test (mRDT). Methods We developed two BN models to predict malaria from a dataset of outpatient encounters of children in Malawi. The first BN model was created manually with expert knowledge, and the second model was derived using an automated method. The performance of the BN models was compared to other statistical models on a range of performance metrics at multiple thresholds. We developed a decision tree that integrates predictions with the costs of mRDT and a course of recommended treatment. Results The manually created BN model achieved an area under the ROC curve (AUC) equal to 0.60 which was statistically significantly higher than the other models. At the optimal threshold for classification, the manual BN model had sensitivity and specificity of 0.74 and 0.42 respectively, and the automated BN model had sensitivity and specificity of 0.45 and 0.68 respectively. The balanced accuracy values were similar across all the models. Sensitivity analysis of the decision tree showed that for values of probability of malaria below 0.04 and above 0.40, the preferred decision that minimizes expected costs is not to perform mRDT. Conclusion In resource-constrained settings, judicious use of mRDT is important. Predictive models in combination with decision analysis can provide personalized guidance on when to use mRDT in the management of childhood malaria. BN models can be efficiently derived from data to support clinical decision making." @default.
- W3120122555 created "2021-01-18" @default.
- W3120122555 creator A5005313203 @default.
- W3120122555 creator A5020941065 @default.
- W3120122555 creator A5021783109 @default.
- W3120122555 creator A5036362467 @default.
- W3120122555 creator A5039985406 @default.
- W3120122555 creator A5070892473 @default.
- W3120122555 date "2021-05-17" @default.
- W3120122555 modified "2023-09-26" @default.
- W3120122555 title "Bayesian network models with decision tree analysis for management of childhood malaria in Malawi" @default.
- W3120122555 cites W1615454278 @default.
- W3120122555 cites W1817561967 @default.
- W3120122555 cites W1891552693 @default.
- W3120122555 cites W1981571008 @default.
- W3120122555 cites W2009683170 @default.
- W3120122555 cites W2022460880 @default.
- W3120122555 cites W2029800614 @default.
- W3120122555 cites W2071696071 @default.
- W3120122555 cites W2115744219 @default.
- W3120122555 cites W2123388015 @default.
- W3120122555 cites W2152575748 @default.
- W3120122555 cites W2157026796 @default.
- W3120122555 cites W2171256230 @default.
- W3120122555 cites W2187050445 @default.
- W3120122555 cites W2328176404 @default.
- W3120122555 cites W2536120357 @default.
- W3120122555 cites W2607471505 @default.
- W3120122555 cites W2766095339 @default.
- W3120122555 cites W2788502029 @default.
- W3120122555 cites W2798205470 @default.
- W3120122555 cites W2801319536 @default.
- W3120122555 cites W2888967035 @default.
- W3120122555 cites W2921518676 @default.
- W3120122555 cites W2947197489 @default.
- W3120122555 cites W2981619872 @default.
- W3120122555 cites W2990353513 @default.
- W3120122555 cites W3191596906 @default.
- W3120122555 doi "https://doi.org/10.1186/s12911-021-01514-w" @default.
- W3120122555 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8130361" @default.
- W3120122555 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34001100" @default.
- W3120122555 hasPublicationYear "2021" @default.
- W3120122555 type Work @default.
- W3120122555 sameAs 3120122555 @default.
- W3120122555 citedByCount "4" @default.
- W3120122555 countsByYear W31201225552022 @default.
- W3120122555 countsByYear W31201225552023 @default.
- W3120122555 crossrefType "journal-article" @default.
- W3120122555 hasAuthorship W3120122555A5005313203 @default.
- W3120122555 hasAuthorship W3120122555A5020941065 @default.
- W3120122555 hasAuthorship W3120122555A5021783109 @default.
- W3120122555 hasAuthorship W3120122555A5036362467 @default.
- W3120122555 hasAuthorship W3120122555A5039985406 @default.
- W3120122555 hasAuthorship W3120122555A5070892473 @default.
- W3120122555 hasBestOaLocation W31201225551 @default.
- W3120122555 hasConcept C107327155 @default.
- W3120122555 hasConcept C107673813 @default.
- W3120122555 hasConcept C119857082 @default.
- W3120122555 hasConcept C138816342 @default.
- W3120122555 hasConcept C142724271 @default.
- W3120122555 hasConcept C145642194 @default.
- W3120122555 hasConcept C154945302 @default.
- W3120122555 hasConcept C160735492 @default.
- W3120122555 hasConcept C162324750 @default.
- W3120122555 hasConcept C2778048844 @default.
- W3120122555 hasConcept C33724603 @default.
- W3120122555 hasConcept C41008148 @default.
- W3120122555 hasConcept C50522688 @default.
- W3120122555 hasConcept C63527458 @default.
- W3120122555 hasConcept C71924100 @default.
- W3120122555 hasConcept C84525736 @default.
- W3120122555 hasConceptScore W3120122555C107327155 @default.
- W3120122555 hasConceptScore W3120122555C107673813 @default.
- W3120122555 hasConceptScore W3120122555C119857082 @default.
- W3120122555 hasConceptScore W3120122555C138816342 @default.
- W3120122555 hasConceptScore W3120122555C142724271 @default.
- W3120122555 hasConceptScore W3120122555C145642194 @default.
- W3120122555 hasConceptScore W3120122555C154945302 @default.
- W3120122555 hasConceptScore W3120122555C160735492 @default.
- W3120122555 hasConceptScore W3120122555C162324750 @default.
- W3120122555 hasConceptScore W3120122555C2778048844 @default.
- W3120122555 hasConceptScore W3120122555C33724603 @default.
- W3120122555 hasConceptScore W3120122555C41008148 @default.
- W3120122555 hasConceptScore W3120122555C50522688 @default.
- W3120122555 hasConceptScore W3120122555C63527458 @default.
- W3120122555 hasConceptScore W3120122555C71924100 @default.
- W3120122555 hasConceptScore W3120122555C84525736 @default.
- W3120122555 hasFunder F4320337372 @default.
- W3120122555 hasIssue "1" @default.
- W3120122555 hasLocation W31201225551 @default.
- W3120122555 hasLocation W31201225552 @default.
- W3120122555 hasLocation W31201225553 @default.
- W3120122555 hasOpenAccess W3120122555 @default.
- W3120122555 hasPrimaryLocation W31201225551 @default.
- W3120122555 hasRelatedWork W1470425429 @default.
- W3120122555 hasRelatedWork W2033725346 @default.
- W3120122555 hasRelatedWork W2074786619 @default.
- W3120122555 hasRelatedWork W2901135493 @default.
- W3120122555 hasRelatedWork W2990439182 @default.
- W3120122555 hasRelatedWork W3120122555 @default.