Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120132237> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3120132237 endingPage "110229" @default.
- W3120132237 startingPage "110229" @default.
- W3120132237 abstract "The difficulty of estimating joint kinematics remains a critical barrier toward widespread use of inertial measurement units in biomechanics. Traditional sensor-fusion filters are largely reliant on magnetometer readings, which may be disturbed in uncontrolled environments. Careful sensor-to-segment alignment and calibration strategies are also necessary, which may burden users and lead to further error in uncontrolled settings. We introduce a new framework that combines deep learning and top-down optimization to accurately predict lower extremity joint angles directly from inertial data, without relying on magnetometer readings. We trained deep neural networks on a large set of synthetic inertial data derived from a clinical marker-based motion-tracking database of hundreds of subjects. We used data augmentation techniques and an automated calibration approach to reduce error due to variability in sensor placement and limb alignment. On left-out subjects, lower extremity kinematics could be predicted with a mean (±STD) root mean squared error of less than 1.27° (±0.38°) in flexion/extension, less than 2.52° (±0.98°) in ad/abduction, and less than 3.34° (±1.02°) internal/external rotation, across walking and running trials. Errors decreased exponentially with the amount of training data, confirming the need for large datasets when training deep neural networks. While this framework remains to be validated with true inertial measurement unit data, the results presented here are a promising advance toward convenient estimation of gait kinematics in natural environments. Progress in this direction could enable large-scale studies and offer new perspective into disease progression, patient recovery, and sports biomechanics." @default.
- W3120132237 created "2021-01-18" @default.
- W3120132237 creator A5008670454 @default.
- W3120132237 creator A5045864780 @default.
- W3120132237 creator A5049063796 @default.
- W3120132237 creator A5055281826 @default.
- W3120132237 creator A5067272320 @default.
- W3120132237 date "2021-02-01" @default.
- W3120132237 modified "2023-10-02" @default.
- W3120132237 title "Estimation of kinematics from inertial measurement units using a combined deep learning and optimization framework" @default.
- W3120132237 cites W1782270568 @default.
- W3120132237 cites W1988110563 @default.
- W3120132237 cites W1993123013 @default.
- W3120132237 cites W2002204150 @default.
- W3120132237 cites W2037819518 @default.
- W3120132237 cites W2049932614 @default.
- W3120132237 cites W2050112413 @default.
- W3120132237 cites W2053146652 @default.
- W3120132237 cites W2073576021 @default.
- W3120132237 cites W2078936766 @default.
- W3120132237 cites W2079613247 @default.
- W3120132237 cites W2101901432 @default.
- W3120132237 cites W2114721754 @default.
- W3120132237 cites W2120920211 @default.
- W3120132237 cites W2120938961 @default.
- W3120132237 cites W2127095067 @default.
- W3120132237 cites W2128885783 @default.
- W3120132237 cites W2131368080 @default.
- W3120132237 cites W2141318231 @default.
- W3120132237 cites W2460830751 @default.
- W3120132237 cites W2540116223 @default.
- W3120132237 cites W2548954486 @default.
- W3120132237 cites W2591682286 @default.
- W3120132237 cites W2736217281 @default.
- W3120132237 cites W2891489434 @default.
- W3120132237 cites W2895748257 @default.
- W3120132237 cites W2954996726 @default.
- W3120132237 cites W2964508341 @default.
- W3120132237 cites W2997769356 @default.
- W3120132237 cites W3003576509 @default.
- W3120132237 doi "https://doi.org/10.1016/j.jbiomech.2021.110229" @default.
- W3120132237 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33485143" @default.
- W3120132237 hasPublicationYear "2021" @default.
- W3120132237 type Work @default.
- W3120132237 sameAs 3120132237 @default.
- W3120132237 citedByCount "33" @default.
- W3120132237 countsByYear W31201322372021 @default.
- W3120132237 countsByYear W31201322372022 @default.
- W3120132237 countsByYear W31201322372023 @default.
- W3120132237 crossrefType "journal-article" @default.
- W3120132237 hasAuthorship W3120132237A5008670454 @default.
- W3120132237 hasAuthorship W3120132237A5045864780 @default.
- W3120132237 hasAuthorship W3120132237A5049063796 @default.
- W3120132237 hasAuthorship W3120132237A5055281826 @default.
- W3120132237 hasAuthorship W3120132237A5067272320 @default.
- W3120132237 hasBestOaLocation W31201322372 @default.
- W3120132237 hasConcept C121332964 @default.
- W3120132237 hasConcept C151233233 @default.
- W3120132237 hasConcept C154945302 @default.
- W3120132237 hasConcept C173386949 @default.
- W3120132237 hasConcept C31972630 @default.
- W3120132237 hasConcept C39920418 @default.
- W3120132237 hasConcept C41008148 @default.
- W3120132237 hasConcept C62520636 @default.
- W3120132237 hasConcept C74650414 @default.
- W3120132237 hasConcept C79061980 @default.
- W3120132237 hasConceptScore W3120132237C121332964 @default.
- W3120132237 hasConceptScore W3120132237C151233233 @default.
- W3120132237 hasConceptScore W3120132237C154945302 @default.
- W3120132237 hasConceptScore W3120132237C173386949 @default.
- W3120132237 hasConceptScore W3120132237C31972630 @default.
- W3120132237 hasConceptScore W3120132237C39920418 @default.
- W3120132237 hasConceptScore W3120132237C41008148 @default.
- W3120132237 hasConceptScore W3120132237C62520636 @default.
- W3120132237 hasConceptScore W3120132237C74650414 @default.
- W3120132237 hasConceptScore W3120132237C79061980 @default.
- W3120132237 hasLocation W31201322371 @default.
- W3120132237 hasLocation W31201322372 @default.
- W3120132237 hasOpenAccess W3120132237 @default.
- W3120132237 hasPrimaryLocation W31201322371 @default.
- W3120132237 hasRelatedWork W2125501610 @default.
- W3120132237 hasRelatedWork W2333544554 @default.
- W3120132237 hasRelatedWork W2411412724 @default.
- W3120132237 hasRelatedWork W2560232609 @default.
- W3120132237 hasRelatedWork W2889530985 @default.
- W3120132237 hasRelatedWork W2890689110 @default.
- W3120132237 hasRelatedWork W2970466398 @default.
- W3120132237 hasRelatedWork W3006502707 @default.
- W3120132237 hasRelatedWork W3022529445 @default.
- W3120132237 hasRelatedWork W4248398246 @default.
- W3120132237 hasVolume "116" @default.
- W3120132237 isParatext "false" @default.
- W3120132237 isRetracted "false" @default.
- W3120132237 magId "3120132237" @default.
- W3120132237 workType "article" @default.