Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120147006> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3120147006 abstract "Recent studies on property valuation models have been using a growing number of factors to improve their accuracies, such as physical characteristics, location, accessibility, and environmental factors. However, beyond such ‘hard’ location factors, also ‘soft’ factors such as the aesthetic of appearance and street visual features, have an impact on housing prices. From an economic perspective, a place with good perceptual value will bring more value for users since it has a positive impact on achieving the goal of diverse health, social, economic, and environmental public policy. Thus, residents are willing to pay more to have better conditions. Hence, the issue of the street perceptual value is important, but it is not used in property valuation models (e.g., hedonic price models) due to its complexity to be modelled. In recent years, street view image as a new data has been widely used to explore the relationship between street visual features or street visual quality and socio-economic variations such as crime rate, income, population density, etc. Inspired by the mentioned above, this study aims to explore the impact of street visual features extracted from the street view images on housing prices in Xi’an. To achieve this goal, the study first uses Fully Convolutional Networks to extract 17 categories features from the street view image. At the same time, for comprehensively analyze key factors affecting housing prices and improve the accuracy of the property valuation model, the auxiliary geospatial data, which constituted the main independent variables in the traditional research (such as location characteristics, house characteristics, and surrounding infrastructure characteristics), also contained in this work. Then, to test the importance of particular variables with respect to the model accuracy, the study using random forest builds three property valuation models with different data sources. The results show that the street visual features can explain the majority of the variance of the house price. By comparing the results of three models, the model using geospatial data performs better than the model using street view image data. More specifically, the results show that there are non-linear relationships between different street visual features and property value. In addition, compared with the hedonic model, this study shows that the random forest regression model can more accurately estimate the housing prices." @default.
- W3120147006 created "2021-01-18" @default.
- W3120147006 creator A5068452582 @default.
- W3120147006 date "2020-01-01" @default.
- W3120147006 modified "2023-09-27" @default.
- W3120147006 title "The relationship between street visual features and property value using deep learning" @default.
- W3120147006 cites W1991142811 @default.
- W3120147006 cites W2018120288 @default.
- W3120147006 cites W2520193187 @default.
- W3120147006 cites W2770820547 @default.
- W3120147006 cites W2793780140 @default.
- W3120147006 cites W2892752814 @default.
- W3120147006 cites W2903963188 @default.
- W3120147006 cites W2964312704 @default.
- W3120147006 cites W3006084244 @default.
- W3120147006 cites W3006831021 @default.
- W3120147006 cites W3100321043 @default.
- W3120147006 hasPublicationYear "2020" @default.
- W3120147006 type Work @default.
- W3120147006 sameAs 3120147006 @default.
- W3120147006 citedByCount "0" @default.
- W3120147006 crossrefType "dissertation" @default.
- W3120147006 hasAuthorship W3120147006A5068452582 @default.
- W3120147006 hasConcept C10138342 @default.
- W3120147006 hasConcept C111472728 @default.
- W3120147006 hasConcept C138885662 @default.
- W3120147006 hasConcept C144024400 @default.
- W3120147006 hasConcept C144133560 @default.
- W3120147006 hasConcept C149923435 @default.
- W3120147006 hasConcept C15744967 @default.
- W3120147006 hasConcept C169760540 @default.
- W3120147006 hasConcept C186027771 @default.
- W3120147006 hasConcept C189950617 @default.
- W3120147006 hasConcept C205649164 @default.
- W3120147006 hasConcept C2522767166 @default.
- W3120147006 hasConcept C26760741 @default.
- W3120147006 hasConcept C2908647359 @default.
- W3120147006 hasConcept C41008148 @default.
- W3120147006 hasConcept C58640448 @default.
- W3120147006 hasConcept C9770341 @default.
- W3120147006 hasConceptScore W3120147006C10138342 @default.
- W3120147006 hasConceptScore W3120147006C111472728 @default.
- W3120147006 hasConceptScore W3120147006C138885662 @default.
- W3120147006 hasConceptScore W3120147006C144024400 @default.
- W3120147006 hasConceptScore W3120147006C144133560 @default.
- W3120147006 hasConceptScore W3120147006C149923435 @default.
- W3120147006 hasConceptScore W3120147006C15744967 @default.
- W3120147006 hasConceptScore W3120147006C169760540 @default.
- W3120147006 hasConceptScore W3120147006C186027771 @default.
- W3120147006 hasConceptScore W3120147006C189950617 @default.
- W3120147006 hasConceptScore W3120147006C205649164 @default.
- W3120147006 hasConceptScore W3120147006C2522767166 @default.
- W3120147006 hasConceptScore W3120147006C26760741 @default.
- W3120147006 hasConceptScore W3120147006C2908647359 @default.
- W3120147006 hasConceptScore W3120147006C41008148 @default.
- W3120147006 hasConceptScore W3120147006C58640448 @default.
- W3120147006 hasConceptScore W3120147006C9770341 @default.
- W3120147006 hasLocation W31201470061 @default.
- W3120147006 hasOpenAccess W3120147006 @default.
- W3120147006 hasPrimaryLocation W31201470061 @default.
- W3120147006 hasRelatedWork W159502327 @default.
- W3120147006 hasRelatedWork W2080043486 @default.
- W3120147006 hasRelatedWork W2116888330 @default.
- W3120147006 hasRelatedWork W2328689554 @default.
- W3120147006 hasRelatedWork W2356372128 @default.
- W3120147006 hasRelatedWork W2616641670 @default.
- W3120147006 hasRelatedWork W2804931247 @default.
- W3120147006 hasRelatedWork W2916807535 @default.
- W3120147006 hasRelatedWork W2948019632 @default.
- W3120147006 hasRelatedWork W2950968614 @default.
- W3120147006 hasRelatedWork W3045435521 @default.
- W3120147006 hasRelatedWork W3109422829 @default.
- W3120147006 hasRelatedWork W3118899449 @default.
- W3120147006 hasRelatedWork W3124295743 @default.
- W3120147006 hasRelatedWork W3124815665 @default.
- W3120147006 hasRelatedWork W3125140313 @default.
- W3120147006 hasRelatedWork W3151319105 @default.
- W3120147006 hasRelatedWork W3194015002 @default.
- W3120147006 hasRelatedWork W3205441650 @default.
- W3120147006 hasRelatedWork W942099318 @default.
- W3120147006 isParatext "false" @default.
- W3120147006 isRetracted "false" @default.
- W3120147006 magId "3120147006" @default.
- W3120147006 workType "dissertation" @default.