Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120173654> ?p ?o ?g. }
- W3120173654 abstract "This paper addresses outdoor terrain mapping using overhead images obtained from an unmanned aerial vehicle. Dense depth estimation from aerial images during flight is challenging. While feature-based localization and mapping techniques can deliver real-time odometry and sparse points reconstruction, a dense environment model is generally recovered offline with significant computation and storage. This paper develops a joint 2D-3D learning approach to reconstruct local meshes at each camera keyframe, which can be assembled into a global environment model. Each local mesh is initialized from sparse depth measurements. We associate image features with the mesh vertices through camera projection and apply graph convolution to refine the mesh vertices based on joint 2-D reprojected depth and 3-D mesh supervision. Quantitative and qualitative evaluations using real aerial images show the potential of our method to support environmental monitoring and surveillance applications." @default.
- W3120173654 created "2021-01-18" @default.
- W3120173654 creator A5025478345 @default.
- W3120173654 creator A5066400889 @default.
- W3120173654 date "2021-01-06" @default.
- W3120173654 modified "2023-09-23" @default.
- W3120173654 title "Mesh Reconstruction from Aerial Images for Outdoor Terrain Mapping Using Joint 2D-3D Learning" @default.
- W3120173654 cites W2021851106 @default.
- W3120173654 cites W2115579991 @default.
- W3120173654 cites W2158778494 @default.
- W3120173654 cites W2169776045 @default.
- W3120173654 cites W2171837816 @default.
- W3120173654 cites W2194775991 @default.
- W3120173654 cites W2745859992 @default.
- W3120173654 cites W2780403726 @default.
- W3120173654 cites W2962778872 @default.
- W3120173654 cites W2963045776 @default.
- W3120173654 cites W2964015378 @default.
- W3120173654 cites W2964121744 @default.
- W3120173654 cites W2969202876 @default.
- W3120173654 cites W2982102242 @default.
- W3120173654 cites W2985775862 @default.
- W3120173654 cites W2990578762 @default.
- W3120173654 cites W2992464978 @default.
- W3120173654 cites W3003371361 @default.
- W3120173654 cites W3035483468 @default.
- W3120173654 cites W3040767154 @default.
- W3120173654 cites W3042719542 @default.
- W3120173654 cites W3124420883 @default.
- W3120173654 hasPublicationYear "2021" @default.
- W3120173654 type Work @default.
- W3120173654 sameAs 3120173654 @default.
- W3120173654 citedByCount "0" @default.
- W3120173654 crossrefType "posted-content" @default.
- W3120173654 hasAuthorship W3120173654A5025478345 @default.
- W3120173654 hasAuthorship W3120173654A5066400889 @default.
- W3120173654 hasConcept C109950114 @default.
- W3120173654 hasConcept C111919701 @default.
- W3120173654 hasConcept C11413529 @default.
- W3120173654 hasConcept C121684516 @default.
- W3120173654 hasConcept C127413603 @default.
- W3120173654 hasConcept C132525143 @default.
- W3120173654 hasConcept C138885662 @default.
- W3120173654 hasConcept C154945302 @default.
- W3120173654 hasConcept C161840515 @default.
- W3120173654 hasConcept C170154142 @default.
- W3120173654 hasConcept C18555067 @default.
- W3120173654 hasConcept C19966478 @default.
- W3120173654 hasConcept C205649164 @default.
- W3120173654 hasConcept C2776401178 @default.
- W3120173654 hasConcept C2779960059 @default.
- W3120173654 hasConcept C31487907 @default.
- W3120173654 hasConcept C31972630 @default.
- W3120173654 hasConcept C41008148 @default.
- W3120173654 hasConcept C41895202 @default.
- W3120173654 hasConcept C45374587 @default.
- W3120173654 hasConcept C57493831 @default.
- W3120173654 hasConcept C58640448 @default.
- W3120173654 hasConcept C80444323 @default.
- W3120173654 hasConcept C86369673 @default.
- W3120173654 hasConcept C90509273 @default.
- W3120173654 hasConceptScore W3120173654C109950114 @default.
- W3120173654 hasConceptScore W3120173654C111919701 @default.
- W3120173654 hasConceptScore W3120173654C11413529 @default.
- W3120173654 hasConceptScore W3120173654C121684516 @default.
- W3120173654 hasConceptScore W3120173654C127413603 @default.
- W3120173654 hasConceptScore W3120173654C132525143 @default.
- W3120173654 hasConceptScore W3120173654C138885662 @default.
- W3120173654 hasConceptScore W3120173654C154945302 @default.
- W3120173654 hasConceptScore W3120173654C161840515 @default.
- W3120173654 hasConceptScore W3120173654C170154142 @default.
- W3120173654 hasConceptScore W3120173654C18555067 @default.
- W3120173654 hasConceptScore W3120173654C19966478 @default.
- W3120173654 hasConceptScore W3120173654C205649164 @default.
- W3120173654 hasConceptScore W3120173654C2776401178 @default.
- W3120173654 hasConceptScore W3120173654C2779960059 @default.
- W3120173654 hasConceptScore W3120173654C31487907 @default.
- W3120173654 hasConceptScore W3120173654C31972630 @default.
- W3120173654 hasConceptScore W3120173654C41008148 @default.
- W3120173654 hasConceptScore W3120173654C41895202 @default.
- W3120173654 hasConceptScore W3120173654C45374587 @default.
- W3120173654 hasConceptScore W3120173654C57493831 @default.
- W3120173654 hasConceptScore W3120173654C58640448 @default.
- W3120173654 hasConceptScore W3120173654C80444323 @default.
- W3120173654 hasConceptScore W3120173654C86369673 @default.
- W3120173654 hasConceptScore W3120173654C90509273 @default.
- W3120173654 hasOpenAccess W3120173654 @default.
- W3120173654 hasRelatedWork W2010711682 @default.
- W3120173654 hasRelatedWork W2034489616 @default.
- W3120173654 hasRelatedWork W2040820161 @default.
- W3120173654 hasRelatedWork W2054605841 @default.
- W3120173654 hasRelatedWork W2085111133 @default.
- W3120173654 hasRelatedWork W2134052317 @default.
- W3120173654 hasRelatedWork W2161206102 @default.
- W3120173654 hasRelatedWork W2261641121 @default.
- W3120173654 hasRelatedWork W2910057090 @default.
- W3120173654 hasRelatedWork W2944355828 @default.
- W3120173654 hasRelatedWork W2965317007 @default.
- W3120173654 hasRelatedWork W3044139450 @default.
- W3120173654 hasRelatedWork W3047209254 @default.