Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120178795> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3120178795 endingPage "516" @default.
- W3120178795 startingPage "516" @default.
- W3120178795 abstract "A critical challenge to using longitudinal wearable sensor biosignal data for healthcare applications and digital biomarker development is the exacerbation of the healthcare “data deluge,” leading to new data storage and organization challenges and costs. Data aggregation, sampling rate minimization, and effective data compression are all methods for consolidating wearable sensor data to reduce data volumes. There has been limited research on appropriate, effective, and efficient data compression methods for biosignal data. Here, we examine the application of different data compression pipelines built using combinations of algorithmic- and encoding-based methods to biosignal data from wearable sensors and explore how these implementations affect data recoverability and storage footprint. Algorithmic methods tested include singular value decomposition, the discrete cosine transform, and the biorthogonal discrete wavelet transform. Encoding methods tested include run-length encoding and Huffman encoding. We apply these methods to common wearable sensor data, including electrocardiogram (ECG), photoplethysmography (PPG), accelerometry, electrodermal activity (EDA), and skin temperature measurements. Of the methods examined in this study and in line with the characteristics of the different data types, we recommend direct data compression with Huffman encoding for ECG, and PPG, singular value decomposition with Huffman encoding for EDA and accelerometry, and the biorthogonal discrete wavelet transform with Huffman encoding for skin temperature to maximize data recoverability after compression. We also report the best methods for maximizing the compression ratio. Finally, we develop and document open-source code and data for each compression method tested here, which can be accessed through the Digital Biomarker Discovery Pipeline as the “Biosignal Data Compression Toolbox,” an open-source, accessible software platform for compressing biosignal data." @default.
- W3120178795 created "2021-01-18" @default.
- W3120178795 creator A5002384612 @default.
- W3120178795 creator A5005786784 @default.
- W3120178795 creator A5037096101 @default.
- W3120178795 creator A5074627930 @default.
- W3120178795 date "2021-01-13" @default.
- W3120178795 modified "2023-09-26" @default.
- W3120178795 title "Biosignal Compression Toolbox for Digital Biomarker Discovery" @default.
- W3120178795 cites W1514868647 @default.
- W3120178795 cites W1996213334 @default.
- W3120178795 cites W2096812488 @default.
- W3120178795 cites W2097544192 @default.
- W3120178795 cites W2105028194 @default.
- W3120178795 cites W2120751691 @default.
- W3120178795 cites W2123339414 @default.
- W3120178795 cites W2125178881 @default.
- W3120178795 cites W2327309706 @default.
- W3120178795 cites W2586184806 @default.
- W3120178795 cites W2618300478 @default.
- W3120178795 cites W2767593850 @default.
- W3120178795 cites W2777663297 @default.
- W3120178795 cites W2800283982 @default.
- W3120178795 cites W2803749063 @default.
- W3120178795 cites W2884044809 @default.
- W3120178795 cites W2892253725 @default.
- W3120178795 cites W2893814198 @default.
- W3120178795 cites W2897749681 @default.
- W3120178795 cites W2902164957 @default.
- W3120178795 cites W2907129173 @default.
- W3120178795 cites W2945594961 @default.
- W3120178795 cites W2946954075 @default.
- W3120178795 cites W2966583097 @default.
- W3120178795 cites W2972136518 @default.
- W3120178795 cites W2986544402 @default.
- W3120178795 cites W2999749474 @default.
- W3120178795 cites W3005348902 @default.
- W3120178795 cites W3042750741 @default.
- W3120178795 cites W3080517557 @default.
- W3120178795 cites W3080550114 @default.
- W3120178795 doi "https://doi.org/10.3390/s21020516" @default.
- W3120178795 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7828339" @default.
- W3120178795 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33450898" @default.
- W3120178795 hasPublicationYear "2021" @default.
- W3120178795 type Work @default.
- W3120178795 sameAs 3120178795 @default.
- W3120178795 citedByCount "7" @default.
- W3120178795 countsByYear W31201787952021 @default.
- W3120178795 countsByYear W31201787952022 @default.
- W3120178795 countsByYear W31201787952023 @default.
- W3120178795 crossrefType "journal-article" @default.
- W3120178795 hasAuthorship W3120178795A5002384612 @default.
- W3120178795 hasAuthorship W3120178795A5005786784 @default.
- W3120178795 hasAuthorship W3120178795A5037096101 @default.
- W3120178795 hasAuthorship W3120178795A5074627930 @default.
- W3120178795 hasBestOaLocation W31201787951 @default.
- W3120178795 hasConcept C106131492 @default.
- W3120178795 hasConcept C124101348 @default.
- W3120178795 hasConcept C154945302 @default.
- W3120178795 hasConcept C2779055241 @default.
- W3120178795 hasConcept C31972630 @default.
- W3120178795 hasConcept C41008148 @default.
- W3120178795 hasConcept C46900642 @default.
- W3120178795 hasConcept C78548338 @default.
- W3120178795 hasConceptScore W3120178795C106131492 @default.
- W3120178795 hasConceptScore W3120178795C124101348 @default.
- W3120178795 hasConceptScore W3120178795C154945302 @default.
- W3120178795 hasConceptScore W3120178795C2779055241 @default.
- W3120178795 hasConceptScore W3120178795C31972630 @default.
- W3120178795 hasConceptScore W3120178795C41008148 @default.
- W3120178795 hasConceptScore W3120178795C46900642 @default.
- W3120178795 hasConceptScore W3120178795C78548338 @default.
- W3120178795 hasFunder F4320315474 @default.
- W3120178795 hasIssue "2" @default.
- W3120178795 hasLocation W31201787951 @default.
- W3120178795 hasLocation W31201787952 @default.
- W3120178795 hasLocation W31201787953 @default.
- W3120178795 hasLocation W31201787954 @default.
- W3120178795 hasLocation W31201787955 @default.
- W3120178795 hasOpenAccess W3120178795 @default.
- W3120178795 hasPrimaryLocation W31201787951 @default.
- W3120178795 hasRelatedWork W2011446102 @default.
- W3120178795 hasRelatedWork W2057878850 @default.
- W3120178795 hasRelatedWork W2337581757 @default.
- W3120178795 hasRelatedWork W2352496160 @default.
- W3120178795 hasRelatedWork W2352725890 @default.
- W3120178795 hasRelatedWork W2372253992 @default.
- W3120178795 hasRelatedWork W2399781125 @default.
- W3120178795 hasRelatedWork W3119430538 @default.
- W3120178795 hasRelatedWork W3120178795 @default.
- W3120178795 hasRelatedWork W3186306250 @default.
- W3120178795 hasVolume "21" @default.
- W3120178795 isParatext "false" @default.
- W3120178795 isRetracted "false" @default.
- W3120178795 magId "3120178795" @default.
- W3120178795 workType "article" @default.