Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120192914> ?p ?o ?g. }
- W3120192914 abstract "Recent substantial advances in high-throughput field phenotyping have provided plant breeders with affordable and efficient tools for evaluating a large number of genotypes for important agronomic traits at early growth stages. Nevertheless, the implementation of large datasets generated by high-throughput phenotyping tools such as hyperspectral reflectance in cultivar development programs is still challenging due to the essential need for intensive knowledge in computational and statistical analyses. In this study, the robustness of three common machine learning (ML) algorithms, multilayer perceptron (MLP), support vector machine (SVM), and random forest (RF), were evaluated for predicting soybean ( Glycine max ) seed yield using hyperspectral reflectance. For this aim, the hyperspectral reflectance data for the whole spectra ranged from 395 to 1005 nm, which were collected at the R4 and R5 growth stages on 250 soybean genotypes grown in four environments. The recursive feature elimination (RFE) approach was performed to reduce the dimensionality of the hyperspectral reflectance data and select variables with the largest importance values. The results indicated that R5 is more informative stage for measuring hyperspectral reflectance to predict seed yields. The 395 nm reflectance band was also identified as the high ranked band in predicting the soybean seed yield. By considering either full or selected variables as the input variables, the ML algorithms were evaluated individually and combined-version using the ensemble–stacking (E–S) method to predict the soybean yield. The RF algorithm had the highest performance with a value of 84% yield classification accuracy among all the individual tested algorithms. Therefore, by selecting RF as the metaClassifier for E–S method, the prediction accuracy increased to 0.93, using all variables, and 0.87, using selected variables showing the success of using E–S as one of the ensemble techniques. This study demonstrated that soybean breeders could implement E–S algorithm using either the full or selected spectra reflectance to select the high-yielding soybean genotypes, among a large number of genotypes, at early growth stages." @default.
- W3120192914 created "2021-01-18" @default.
- W3120192914 creator A5005286348 @default.
- W3120192914 creator A5038897445 @default.
- W3120192914 creator A5044231936 @default.
- W3120192914 creator A5070004148 @default.
- W3120192914 creator A5084235532 @default.
- W3120192914 date "2021-01-12" @default.
- W3120192914 modified "2023-10-18" @default.
- W3120192914 title "Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean" @default.
- W3120192914 cites W1534477342 @default.
- W3120192914 cites W1573528873 @default.
- W3120192914 cites W1596717185 @default.
- W3120192914 cites W1724442104 @default.
- W3120192914 cites W1827322724 @default.
- W3120192914 cites W1831050183 @default.
- W3120192914 cites W1966580635 @default.
- W3120192914 cites W1967797869 @default.
- W3120192914 cites W1975413265 @default.
- W3120192914 cites W1987213677 @default.
- W3120192914 cites W1987676671 @default.
- W3120192914 cites W1995269805 @default.
- W3120192914 cites W1997313699 @default.
- W3120192914 cites W1999466943 @default.
- W3120192914 cites W2001986102 @default.
- W3120192914 cites W2010330462 @default.
- W3120192914 cites W2014643551 @default.
- W3120192914 cites W2019439088 @default.
- W3120192914 cites W2025238103 @default.
- W3120192914 cites W2027806855 @default.
- W3120192914 cites W2038105731 @default.
- W3120192914 cites W2044579050 @default.
- W3120192914 cites W2048016791 @default.
- W3120192914 cites W2053027480 @default.
- W3120192914 cites W2053295697 @default.
- W3120192914 cites W2056184826 @default.
- W3120192914 cites W2058450669 @default.
- W3120192914 cites W2061609583 @default.
- W3120192914 cites W2065469815 @default.
- W3120192914 cites W2067877300 @default.
- W3120192914 cites W2071902553 @default.
- W3120192914 cites W2086330580 @default.
- W3120192914 cites W2091313930 @default.
- W3120192914 cites W2091623059 @default.
- W3120192914 cites W2092829070 @default.
- W3120192914 cites W2095727900 @default.
- W3120192914 cites W2099454382 @default.
- W3120192914 cites W2103291381 @default.
- W3120192914 cites W2107412299 @default.
- W3120192914 cites W2109606373 @default.
- W3120192914 cites W2114367267 @default.
- W3120192914 cites W2119198082 @default.
- W3120192914 cites W2120441807 @default.
- W3120192914 cites W2126902408 @default.
- W3120192914 cites W2128154306 @default.
- W3120192914 cites W2131296063 @default.
- W3120192914 cites W2133990480 @default.
- W3120192914 cites W2143426320 @default.
- W3120192914 cites W2143479271 @default.
- W3120192914 cites W2147669154 @default.
- W3120192914 cites W2162557376 @default.
- W3120192914 cites W2252396988 @default.
- W3120192914 cites W2286298080 @default.
- W3120192914 cites W2296277783 @default.
- W3120192914 cites W2316522976 @default.
- W3120192914 cites W2417010666 @default.
- W3120192914 cites W2494022581 @default.
- W3120192914 cites W2495369798 @default.
- W3120192914 cites W2497963276 @default.
- W3120192914 cites W2550552207 @default.
- W3120192914 cites W2552345752 @default.
- W3120192914 cites W2562063914 @default.
- W3120192914 cites W2594434602 @default.
- W3120192914 cites W2598591505 @default.
- W3120192914 cites W2606116651 @default.
- W3120192914 cites W2606564191 @default.
- W3120192914 cites W2607306668 @default.
- W3120192914 cites W2743464688 @default.
- W3120192914 cites W2762128751 @default.
- W3120192914 cites W2767410253 @default.
- W3120192914 cites W2789833233 @default.
- W3120192914 cites W2794424390 @default.
- W3120192914 cites W2802742804 @default.
- W3120192914 cites W2805467558 @default.
- W3120192914 cites W2806658743 @default.
- W3120192914 cites W2807671950 @default.
- W3120192914 cites W2809701111 @default.
- W3120192914 cites W2830808006 @default.
- W3120192914 cites W2886013788 @default.
- W3120192914 cites W2901048536 @default.
- W3120192914 cites W2901815760 @default.
- W3120192914 cites W2902725538 @default.
- W3120192914 cites W2911697849 @default.
- W3120192914 cites W2911964244 @default.
- W3120192914 cites W2952512196 @default.
- W3120192914 cites W2953516452 @default.
- W3120192914 cites W2955717168 @default.
- W3120192914 cites W2957945548 @default.
- W3120192914 cites W2958583289 @default.
- W3120192914 cites W2998198695 @default.