Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120236540> ?p ?o ?g. }
- W3120236540 endingPage "332" @default.
- W3120236540 startingPage "321" @default.
- W3120236540 abstract "The study of mitochondrial aerobic metabolism provides a promising avenue through which ecologists and evolutionary biologists can explore mechanistic sources of variation in metabolic and life-history phenotypes, with important consequences for organismal performance and fitness. Mitochondria vary not only in rate of respiration, but also in ATP production efficiency through OXPHOS, rate of ROS production, and amount of heat generated; the interplay among these factors underlies mechanistic trade-offs and constraints that can have cascading effects up to the level of organismal performance. Growing interest in mitochondrial biology within ecology and evolutionary biology, has enriched understanding of how metabolic rate, energy availability, and the byproducts of mitochondrial aerobic metabolism, may interact to shape different life-history strategies and how organisms adapt to their environment. Biologists have long appreciated the critical role that energy turnover plays in understanding variation in performance and fitness among individuals. Whole-organism metabolic studies have provided key insights into fundamental ecological and evolutionary processes. However, constraints operating at subcellular levels, such as those operating within the mitochondria, can also play important roles in optimizing metabolism over different energetic demands and time scales. Herein, we explore how mitochondrial aerobic metabolism influences different aspects of organismal performance, such as through changing adenosine triphosphate (ATP) and reactive oxygen species (ROS) production. We consider how such insights have advanced our understanding of the mechanisms underpinning key ecological and evolutionary processes, from variation in life-history traits to adaptation to changing thermal conditions, and we highlight key areas for future research. Biologists have long appreciated the critical role that energy turnover plays in understanding variation in performance and fitness among individuals. Whole-organism metabolic studies have provided key insights into fundamental ecological and evolutionary processes. However, constraints operating at subcellular levels, such as those operating within the mitochondria, can also play important roles in optimizing metabolism over different energetic demands and time scales. Herein, we explore how mitochondrial aerobic metabolism influences different aspects of organismal performance, such as through changing adenosine triphosphate (ATP) and reactive oxygen species (ROS) production. We consider how such insights have advanced our understanding of the mechanisms underpinning key ecological and evolutionary processes, from variation in life-history traits to adaptation to changing thermal conditions, and we highlight key areas for future research. a series of protein complexes in the inner mitochondrial membrane that transfer electrons via oxidation/reduction reactions. These reactions are coupled to the pumping of protons out of the mitochondrial matrix to create a protonmotive force. oxygen used to offset proton leak. Also called state 4 respiration rate. the metabolic (anabolic and catabolic) reactions that occur within the mitochondria, that involve direct and indirect use of oxygen. This comprises activity of the electron transport chain, protonmotive force, ATP production, and ROS generation. efficiency of mitochondria to convert food-derived energy substrate into ATP. Efficiency is often estimated in vitro with P:O ratios and respiratory control ratios (RCR). functional associations between the products of the mitochondrial and nuclear genomes that can affect mitochondrial aerobic metabolism. phosphorylation of ADP into ATP in the presence of oxygen. Conversion of ADP to ATP is performed by ATP synthase, and uses the energy provided by the protonmotive force. imbalance between the production of pro-oxidants (such as ROS) and the ability of a biological system to neutralize them through antioxidant defenses, leading to oxidative damage to biomolecules. oxygen used when mitochondria are actively producing ATP. Also called state 3 respiration rate. protons that flow back across the inner mitochondrial membrane into the matrix outside of ATP synthase. Proton leak may be passive, particularly when membrane potential is high, or inducible (and regulated through transmembrane proteins). the potential energy stored across the inner mitochondrial membrane, that is established by pumping protons from the mitochondrial membrane to the intermembrane space; the protonmotive force involves both the chemical gradient formed by the difference in proton concentration, and the electrical gradient formed by the difference in charge. derivatives of oxygen that are chemically unstable and quickly react with different kinds of biomolecules; ROS are important cellular signals but can also cause altered function through oxidative damage. the dissociation of mitochondrial protonmotive force generation (i.e., the ‘uncoupling’ of electron transport chain activity) from ATP synthesis." @default.
- W3120236540 created "2021-01-18" @default.
- W3120236540 creator A5010649636 @default.
- W3120236540 creator A5010740372 @default.
- W3120236540 creator A5011283887 @default.
- W3120236540 creator A5012763497 @default.
- W3120236540 creator A5021358192 @default.
- W3120236540 creator A5028073300 @default.
- W3120236540 creator A5032321493 @default.
- W3120236540 creator A5033278119 @default.
- W3120236540 creator A5037390505 @default.
- W3120236540 creator A5042655145 @default.
- W3120236540 creator A5043430415 @default.
- W3120236540 creator A5049470038 @default.
- W3120236540 creator A5051270012 @default.
- W3120236540 creator A5062505815 @default.
- W3120236540 creator A5072874450 @default.
- W3120236540 creator A5082488407 @default.
- W3120236540 creator A5085092943 @default.
- W3120236540 date "2021-04-01" @default.
- W3120236540 modified "2023-10-17" @default.
- W3120236540 title "Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution" @default.
- W3120236540 cites W1582621203 @default.
- W3120236540 cites W1661177711 @default.
- W3120236540 cites W1768538525 @default.
- W3120236540 cites W1828522958 @default.
- W3120236540 cites W1968406679 @default.
- W3120236540 cites W1973379308 @default.
- W3120236540 cites W1979048203 @default.
- W3120236540 cites W1985185038 @default.
- W3120236540 cites W1985977889 @default.
- W3120236540 cites W1989836438 @default.
- W3120236540 cites W1995159215 @default.
- W3120236540 cites W2002951340 @default.
- W3120236540 cites W2021412375 @default.
- W3120236540 cites W2021952329 @default.
- W3120236540 cites W2030389371 @default.
- W3120236540 cites W2034900531 @default.
- W3120236540 cites W2042823295 @default.
- W3120236540 cites W2042928173 @default.
- W3120236540 cites W2044477864 @default.
- W3120236540 cites W2050553294 @default.
- W3120236540 cites W2061352989 @default.
- W3120236540 cites W2075282827 @default.
- W3120236540 cites W2075462691 @default.
- W3120236540 cites W2078139350 @default.
- W3120236540 cites W2086276885 @default.
- W3120236540 cites W2087350238 @default.
- W3120236540 cites W2090652051 @default.
- W3120236540 cites W2090665599 @default.
- W3120236540 cites W2102203364 @default.
- W3120236540 cites W2105537673 @default.
- W3120236540 cites W2106934205 @default.
- W3120236540 cites W2114795157 @default.
- W3120236540 cites W2118189119 @default.
- W3120236540 cites W2121966499 @default.
- W3120236540 cites W2128513179 @default.
- W3120236540 cites W2139200038 @default.
- W3120236540 cites W2143505819 @default.
- W3120236540 cites W2146325659 @default.
- W3120236540 cites W2151477105 @default.
- W3120236540 cites W2155843473 @default.
- W3120236540 cites W2168397517 @default.
- W3120236540 cites W2174340698 @default.
- W3120236540 cites W2174968744 @default.
- W3120236540 cites W2255369864 @default.
- W3120236540 cites W2315512556 @default.
- W3120236540 cites W2330909061 @default.
- W3120236540 cites W2488318029 @default.
- W3120236540 cites W2511056081 @default.
- W3120236540 cites W2522241534 @default.
- W3120236540 cites W2525022570 @default.
- W3120236540 cites W2535420967 @default.
- W3120236540 cites W2537237679 @default.
- W3120236540 cites W2561095906 @default.
- W3120236540 cites W2605004006 @default.
- W3120236540 cites W2762898031 @default.
- W3120236540 cites W2784259034 @default.
- W3120236540 cites W2799846595 @default.
- W3120236540 cites W2800285462 @default.
- W3120236540 cites W2801714318 @default.
- W3120236540 cites W2805752574 @default.
- W3120236540 cites W2806196889 @default.
- W3120236540 cites W2809281987 @default.
- W3120236540 cites W2829197377 @default.
- W3120236540 cites W2883698486 @default.
- W3120236540 cites W2884887324 @default.
- W3120236540 cites W2886195341 @default.
- W3120236540 cites W2906159252 @default.
- W3120236540 cites W2906969592 @default.
- W3120236540 cites W2907439517 @default.
- W3120236540 cites W2911473603 @default.
- W3120236540 cites W2921978154 @default.
- W3120236540 cites W2922245220 @default.
- W3120236540 cites W2938697572 @default.
- W3120236540 cites W2949196134 @default.
- W3120236540 cites W2949636988 @default.
- W3120236540 cites W2952048439 @default.