Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120238974> ?p ?o ?g. }
- W3120238974 endingPage "1694" @default.
- W3120238974 startingPage "1681" @default.
- W3120238974 abstract "Abstract Low-grade serous ovarian carcinoma (LGSOC) is a rare tumor subtype with high case fatality rates in patients with metastatic disease. There is a pressing need to develop effective treatments using newly available preclinical models for therapeutic discovery and drug evaluation. Here, we use multiomics integration of whole-exome sequencing, RNA sequencing, and mass spectrometry–based proteomics on 14 LGSOC cell lines to elucidate novel biomarkers and therapeutic vulnerabilities. Comparison of LGSOC cell line data with LGSOC tumor data enabled predictive biomarker identification of MEK inhibitor (MEKi) efficacy, with KRAS mutations found exclusively in MEKi-sensitive cell lines and NRAS mutations found mostly in MEKi-resistant cell lines. Distinct patterns of Catalogue of Somatic Mutations in Cancer mutational signatures were identified in MEKi-sensitive and MEKi-resistant cell lines. Deletions of CDKN2A/B and MTAP genes were more frequent in cell lines than tumor samples and possibly represent key driver events in the absence of KRAS/NRAS/BRAF mutations. These LGSOC cell lines were representative models of the molecular aberrations found in LGSOC tumors. For prediction of in vitro MEKi efficacy, proteomic data provided better discrimination than gene expression data. Condensin, minichromosome maintenance, and replication factor C protein complexes were identified as potential treatment targets in MEKi-resistant cell lines. This study suggests that CDKN2A/B or MTAP deficiency may be exploited using synthetically lethal treatment strategies, highlighting the importance of using proteomic data as a tool for molecular drug prediction. Multiomics approaches are crucial to improving our understanding of the molecular underpinnings of LGSOC and applying this information to develop new therapies. Significance: These findings highlight the utility of global multiomics to characterize LGSOC cell lines as research models, to determine biomarkers of MEKi resistance, and to identify potential novel therapeutic targets." @default.
- W3120238974 created "2021-01-18" @default.
- W3120238974 creator A5000506061 @default.
- W3120238974 creator A5007641782 @default.
- W3120238974 creator A5016400173 @default.
- W3120238974 creator A5018264282 @default.
- W3120238974 creator A5020403670 @default.
- W3120238974 creator A5022198855 @default.
- W3120238974 creator A5023701192 @default.
- W3120238974 creator A5025235382 @default.
- W3120238974 creator A5026729348 @default.
- W3120238974 creator A5036450315 @default.
- W3120238974 creator A5036712011 @default.
- W3120238974 creator A5048247983 @default.
- W3120238974 creator A5050325886 @default.
- W3120238974 creator A5057709618 @default.
- W3120238974 creator A5058224880 @default.
- W3120238974 creator A5058376745 @default.
- W3120238974 creator A5074031951 @default.
- W3120238974 creator A5083636136 @default.
- W3120238974 creator A5084687097 @default.
- W3120238974 creator A5087676245 @default.
- W3120238974 date "2021-01-13" @default.
- W3120238974 modified "2023-10-18" @default.
- W3120238974 title "Multiomics Characterization of Low-Grade Serous Ovarian Carcinoma Identifies Potential Biomarkers of MEK Inhibitor Sensitivity and Therapeutic Vulnerability" @default.
- W3120238974 cites W1601126056 @default.
- W3120238974 cites W1825430271 @default.
- W3120238974 cites W1961928411 @default.
- W3120238974 cites W1964807436 @default.
- W3120238974 cites W1975877336 @default.
- W3120238974 cites W1984068087 @default.
- W3120238974 cites W2003273433 @default.
- W3120238974 cites W2003391982 @default.
- W3120238974 cites W2003929214 @default.
- W3120238974 cites W2010845229 @default.
- W3120238974 cites W2014881369 @default.
- W3120238974 cites W2017408894 @default.
- W3120238974 cites W2033670530 @default.
- W3120238974 cites W2039505540 @default.
- W3120238974 cites W2049553483 @default.
- W3120238974 cites W2057058351 @default.
- W3120238974 cites W2076623927 @default.
- W3120238974 cites W2091107854 @default.
- W3120238974 cites W2102962435 @default.
- W3120238974 cites W2103441770 @default.
- W3120238974 cites W2114852376 @default.
- W3120238974 cites W2121741947 @default.
- W3120238974 cites W2127037900 @default.
- W3120238974 cites W2129355295 @default.
- W3120238974 cites W2134526812 @default.
- W3120238974 cites W2152061559 @default.
- W3120238974 cites W2169353806 @default.
- W3120238974 cites W2169456326 @default.
- W3120238974 cites W2179438025 @default.
- W3120238974 cites W2250463341 @default.
- W3120238974 cites W2257573908 @default.
- W3120238974 cites W2276335691 @default.
- W3120238974 cites W2300615341 @default.
- W3120238974 cites W2323041333 @default.
- W3120238974 cites W2346979970 @default.
- W3120238974 cites W2465367340 @default.
- W3120238974 cites W2554300018 @default.
- W3120238974 cites W2586712356 @default.
- W3120238974 cites W2590382554 @default.
- W3120238974 cites W2601520864 @default.
- W3120238974 cites W2617976150 @default.
- W3120238974 cites W2653933210 @default.
- W3120238974 cites W2737623232 @default.
- W3120238974 cites W2753578917 @default.
- W3120238974 cites W2867868648 @default.
- W3120238974 cites W2886558446 @default.
- W3120238974 cites W2905043436 @default.
- W3120238974 cites W2905231927 @default.
- W3120238974 cites W2915560143 @default.
- W3120238974 cites W2917802131 @default.
- W3120238974 cites W2943608436 @default.
- W3120238974 cites W2978799683 @default.
- W3120238974 cites W2989925595 @default.
- W3120238974 cites W2995949931 @default.
- W3120238974 cites W3003504749 @default.
- W3120238974 cites W3080988574 @default.
- W3120238974 cites W3085809921 @default.
- W3120238974 cites W3217485783 @default.
- W3120238974 cites W4243979784 @default.
- W3120238974 doi "https://doi.org/10.1158/0008-5472.can-20-2222" @default.
- W3120238974 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33441310" @default.
- W3120238974 hasPublicationYear "2021" @default.
- W3120238974 type Work @default.
- W3120238974 sameAs 3120238974 @default.
- W3120238974 citedByCount "16" @default.
- W3120238974 countsByYear W31202389742021 @default.
- W3120238974 countsByYear W31202389742022 @default.
- W3120238974 countsByYear W31202389742023 @default.
- W3120238974 crossrefType "journal-article" @default.
- W3120238974 hasAuthorship W3120238974A5000506061 @default.
- W3120238974 hasAuthorship W3120238974A5007641782 @default.
- W3120238974 hasAuthorship W3120238974A5016400173 @default.
- W3120238974 hasAuthorship W3120238974A5018264282 @default.