Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120244865> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3120244865 abstract "Abstract Person Recognition based on Gait Model (PRGM) and motion features is are indeed a challenging and novel task due to their usages and to the critical issues of human pose variation, human body occlusion, camera view variation, etc. In this project, a deep convolution neural network (CNN) was modified and adapted for person recognition with Image Augmentation (IA) technique depending on gait features. Adaptation aims to get best values for CNN parameters to get best CNN model. In Addition to the CNN parameters Adaptation, the design of CNN model itself was adapted to get best model structure; Adaptation in the design was affected the type, the number of layers in CNN and normalization between them. After choosing best parameters and best design, Image augmentation was used to increase the size of train dataset with many copies of the image to boost the number of different images that will be used to train Deep learning algorithms. The tests were achieved using known dataset (Market dataset). The dataset contains sequential pictures of people in different gait status. The image in CNN model as matrix is extracted to many images or matrices by the convolution, so dataset size may be bigger by hundred times to make the problem a big data issue. In this project, results show that adaptation has improved the accuracy of person recognition using gait model comparing to model without adaptation. In addition, dataset contains images of person carrying things. IA technique improved the model to be robust to some variations such as image dimensions (quality and resolution), rotations and carried things by persons. Results for 200 persons recognition, validation accuracy was about 82% without IA and 96.23 with IA. For 800 persons recognition, validation accuracy was 93.62% without IA." @default.
- W3120244865 created "2021-01-18" @default.
- W3120244865 creator A5007268638 @default.
- W3120244865 creator A5017913629 @default.
- W3120244865 date "2021-01-03" @default.
- W3120244865 modified "2023-10-10" @default.
- W3120244865 title "Analysis and best parameters selection for person recognition based on gait model using CNN algorithm and image augmentation" @default.
- W3120244865 cites W14993799 @default.
- W3120244865 cites W2144354855 @default.
- W3120244865 cites W2542381826 @default.
- W3120244865 cites W2573967255 @default.
- W3120244865 cites W2607859086 @default.
- W3120244865 cites W2745659361 @default.
- W3120244865 cites W2766172911 @default.
- W3120244865 cites W2793243914 @default.
- W3120244865 cites W2809254203 @default.
- W3120244865 cites W2894234546 @default.
- W3120244865 cites W2940710034 @default.
- W3120244865 cites W2950657507 @default.
- W3120244865 cites W2954996726 @default.
- W3120244865 cites W2962949934 @default.
- W3120244865 cites W2963589138 @default.
- W3120244865 cites W2963854019 @default.
- W3120244865 cites W2967095016 @default.
- W3120244865 cites W2980167494 @default.
- W3120244865 cites W3004193462 @default.
- W3120244865 cites W3014370958 @default.
- W3120244865 cites W3033225566 @default.
- W3120244865 cites W3082981339 @default.
- W3120244865 cites W4245460797 @default.
- W3120244865 cites W4250482878 @default.
- W3120244865 doi "https://doi.org/10.1186/s40537-020-00387-6" @default.
- W3120244865 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7778727" @default.
- W3120244865 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33425651" @default.
- W3120244865 hasPublicationYear "2021" @default.
- W3120244865 type Work @default.
- W3120244865 sameAs 3120244865 @default.
- W3120244865 citedByCount "64" @default.
- W3120244865 countsByYear W31202448652021 @default.
- W3120244865 countsByYear W31202448652022 @default.
- W3120244865 countsByYear W31202448652023 @default.
- W3120244865 crossrefType "journal-article" @default.
- W3120244865 hasAuthorship W3120244865A5007268638 @default.
- W3120244865 hasAuthorship W3120244865A5017913629 @default.
- W3120244865 hasBestOaLocation W31202448651 @default.
- W3120244865 hasConcept C108583219 @default.
- W3120244865 hasConcept C115961682 @default.
- W3120244865 hasConcept C120665830 @default.
- W3120244865 hasConcept C121332964 @default.
- W3120244865 hasConcept C136886441 @default.
- W3120244865 hasConcept C139807058 @default.
- W3120244865 hasConcept C144024400 @default.
- W3120244865 hasConcept C153180895 @default.
- W3120244865 hasConcept C154945302 @default.
- W3120244865 hasConcept C19165224 @default.
- W3120244865 hasConcept C31972630 @default.
- W3120244865 hasConcept C41008148 @default.
- W3120244865 hasConcept C45347329 @default.
- W3120244865 hasConcept C50644808 @default.
- W3120244865 hasConcept C81363708 @default.
- W3120244865 hasConceptScore W3120244865C108583219 @default.
- W3120244865 hasConceptScore W3120244865C115961682 @default.
- W3120244865 hasConceptScore W3120244865C120665830 @default.
- W3120244865 hasConceptScore W3120244865C121332964 @default.
- W3120244865 hasConceptScore W3120244865C136886441 @default.
- W3120244865 hasConceptScore W3120244865C139807058 @default.
- W3120244865 hasConceptScore W3120244865C144024400 @default.
- W3120244865 hasConceptScore W3120244865C153180895 @default.
- W3120244865 hasConceptScore W3120244865C154945302 @default.
- W3120244865 hasConceptScore W3120244865C19165224 @default.
- W3120244865 hasConceptScore W3120244865C31972630 @default.
- W3120244865 hasConceptScore W3120244865C41008148 @default.
- W3120244865 hasConceptScore W3120244865C45347329 @default.
- W3120244865 hasConceptScore W3120244865C50644808 @default.
- W3120244865 hasConceptScore W3120244865C81363708 @default.
- W3120244865 hasIssue "1" @default.
- W3120244865 hasLocation W31202448651 @default.
- W3120244865 hasLocation W31202448652 @default.
- W3120244865 hasLocation W31202448653 @default.
- W3120244865 hasLocation W31202448654 @default.
- W3120244865 hasOpenAccess W3120244865 @default.
- W3120244865 hasPrimaryLocation W31202448651 @default.
- W3120244865 hasRelatedWork W2732542196 @default.
- W3120244865 hasRelatedWork W2738221750 @default.
- W3120244865 hasRelatedWork W2767708349 @default.
- W3120244865 hasRelatedWork W2810384904 @default.
- W3120244865 hasRelatedWork W3129634582 @default.
- W3120244865 hasRelatedWork W3156786002 @default.
- W3120244865 hasRelatedWork W3165266428 @default.
- W3120244865 hasRelatedWork W4312417841 @default.
- W3120244865 hasRelatedWork W4321369474 @default.
- W3120244865 hasRelatedWork W564581980 @default.
- W3120244865 hasVolume "8" @default.
- W3120244865 isParatext "false" @default.
- W3120244865 isRetracted "false" @default.
- W3120244865 magId "3120244865" @default.
- W3120244865 workType "article" @default.