Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120272807> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3120272807 endingPage "2325" @default.
- W3120272807 startingPage "2314" @default.
- W3120272807 abstract "Even when human point forecasts are less accurate than data-based algorithm predictions, they can still help boost performance by being used as algorithm inputs. Assuming one uses human judgment indirectly in this manner, we propose changing the elicitation question from the traditional direct forecast (DF) to what we call the private information adjustment (PIA): how much the human thinks the algorithm should adjust its forecast to account for information the human has that is unused by the algorithm. Using stylized models with and without random error, we theoretically prove that human random error makes eliciting the PIA lead to more accurate predictions than eliciting the DF. However, this DF-PIA gap does not exist for perfectly consistent forecasters. The DF-PIA gap is increasing in the random error that people make while incorporating public information (data that the algorithm uses) but is decreasing in the random error that people make while incorporating private information (data that only the human can use). In controlled experiments with students and Amazon Mechanical Turk workers, we find support for these hypotheses. This paper was accepted by Charles Corbett, operations management." @default.
- W3120272807 created "2021-01-18" @default.
- W3120272807 creator A5005076373 @default.
- W3120272807 creator A5027676046 @default.
- W3120272807 creator A5046778642 @default.
- W3120272807 date "2021-04-01" @default.
- W3120272807 modified "2023-10-13" @default.
- W3120272807 title "Eliciting Human Judgment for Prediction Algorithms" @default.
- W3120272807 cites W1885527984 @default.
- W3120272807 cites W1995118028 @default.
- W3120272807 cites W2011066205 @default.
- W3120272807 cites W2012331295 @default.
- W3120272807 cites W2030096159 @default.
- W3120272807 cites W2040640338 @default.
- W3120272807 cites W2047437911 @default.
- W3120272807 cites W2049548944 @default.
- W3120272807 cites W2081754163 @default.
- W3120272807 cites W2096389943 @default.
- W3120272807 cites W2104546629 @default.
- W3120272807 cites W2106438008 @default.
- W3120272807 cites W2125898491 @default.
- W3120272807 cites W2126309664 @default.
- W3120272807 cites W2138035124 @default.
- W3120272807 cites W2139754276 @default.
- W3120272807 cites W2144892099 @default.
- W3120272807 cites W2147106137 @default.
- W3120272807 cites W2168718873 @default.
- W3120272807 cites W2740036821 @default.
- W3120272807 cites W2790233912 @default.
- W3120272807 cites W2890112222 @default.
- W3120272807 cites W2946683664 @default.
- W3120272807 cites W3124136503 @default.
- W3120272807 cites W3124323365 @default.
- W3120272807 cites W3125141257 @default.
- W3120272807 cites W3125406778 @default.
- W3120272807 doi "https://doi.org/10.1287/mnsc.2020.3856" @default.
- W3120272807 hasPublicationYear "2021" @default.
- W3120272807 type Work @default.
- W3120272807 sameAs 3120272807 @default.
- W3120272807 citedByCount "22" @default.
- W3120272807 countsByYear W31202728072020 @default.
- W3120272807 countsByYear W31202728072021 @default.
- W3120272807 countsByYear W31202728072022 @default.
- W3120272807 countsByYear W31202728072023 @default.
- W3120272807 crossrefType "journal-article" @default.
- W3120272807 hasAuthorship W3120272807A5005076373 @default.
- W3120272807 hasAuthorship W3120272807A5027676046 @default.
- W3120272807 hasAuthorship W3120272807A5046778642 @default.
- W3120272807 hasBestOaLocation W31202728072 @default.
- W3120272807 hasConcept C105795698 @default.
- W3120272807 hasConcept C11413529 @default.
- W3120272807 hasConcept C139719470 @default.
- W3120272807 hasConcept C154945302 @default.
- W3120272807 hasConcept C162324750 @default.
- W3120272807 hasConcept C169806903 @default.
- W3120272807 hasConcept C2524010 @default.
- W3120272807 hasConcept C28719098 @default.
- W3120272807 hasConcept C33923547 @default.
- W3120272807 hasConcept C38935604 @default.
- W3120272807 hasConcept C41008148 @default.
- W3120272807 hasConcept C73782692 @default.
- W3120272807 hasConceptScore W3120272807C105795698 @default.
- W3120272807 hasConceptScore W3120272807C11413529 @default.
- W3120272807 hasConceptScore W3120272807C139719470 @default.
- W3120272807 hasConceptScore W3120272807C154945302 @default.
- W3120272807 hasConceptScore W3120272807C162324750 @default.
- W3120272807 hasConceptScore W3120272807C169806903 @default.
- W3120272807 hasConceptScore W3120272807C2524010 @default.
- W3120272807 hasConceptScore W3120272807C28719098 @default.
- W3120272807 hasConceptScore W3120272807C33923547 @default.
- W3120272807 hasConceptScore W3120272807C38935604 @default.
- W3120272807 hasConceptScore W3120272807C41008148 @default.
- W3120272807 hasConceptScore W3120272807C73782692 @default.
- W3120272807 hasIssue "4" @default.
- W3120272807 hasLocation W31202728071 @default.
- W3120272807 hasLocation W31202728072 @default.
- W3120272807 hasLocation W31202728073 @default.
- W3120272807 hasLocation W31202728074 @default.
- W3120272807 hasLocation W31202728075 @default.
- W3120272807 hasOpenAccess W3120272807 @default.
- W3120272807 hasPrimaryLocation W31202728071 @default.
- W3120272807 hasRelatedWork W1556625970 @default.
- W3120272807 hasRelatedWork W2333698505 @default.
- W3120272807 hasRelatedWork W2351491280 @default.
- W3120272807 hasRelatedWork W2371447506 @default.
- W3120272807 hasRelatedWork W2386767533 @default.
- W3120272807 hasRelatedWork W303980170 @default.
- W3120272807 hasRelatedWork W3107474891 @default.
- W3120272807 hasRelatedWork W3120272807 @default.
- W3120272807 hasRelatedWork W3137084011 @default.
- W3120272807 hasRelatedWork W3167021722 @default.
- W3120272807 hasVolume "67" @default.
- W3120272807 isParatext "false" @default.
- W3120272807 isRetracted "false" @default.
- W3120272807 magId "3120272807" @default.
- W3120272807 workType "article" @default.