Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120291732> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3120291732 abstract "To achieve a successful software, bug prediction mainly place an important role. Nowadays, bug prediction has become an essential argument in the maintenance and development phase. So, it's necessary to predict bugs in earlier stages of software development life cycle. The challenge here is to develop a model that helps in predicting bugs leading to good quality, reliable, efficient and cost-effective software. For complex software projects, bugs are major issues. The proposed model provides the comparative analysis on various machine learning algorithms that are developed to predict bugs namely Random Forest, Logistic regression, Decision Tree, Artificial Neural Network and Naive Bayes. Here Artificial Neural Network is used along with other algorithms such that the model can be trained for large datasets, in order to get more accurate results working effectively for various scenarios. The performance of each model is evaluated, and cross validation is performed followed by visualizing the results. Finally, when all the models are compared Artificial Neural Network appears to be the best model by providing 82.77%." @default.
- W3120291732 created "2021-01-18" @default.
- W3120291732 creator A5036749640 @default.
- W3120291732 creator A5077075502 @default.
- W3120291732 date "2020-11-06" @default.
- W3120291732 modified "2023-10-18" @default.
- W3120291732 title "Predicting Bug in a Software using ANN Based Machine Learning Techniques" @default.
- W3120291732 cites W2012591582 @default.
- W3120291732 cites W2052229651 @default.
- W3120291732 cites W2097883090 @default.
- W3120291732 cites W2150361830 @default.
- W3120291732 cites W2474835145 @default.
- W3120291732 cites W2567283212 @default.
- W3120291732 cites W2592308801 @default.
- W3120291732 cites W2744701441 @default.
- W3120291732 cites W2809851129 @default.
- W3120291732 cites W2887331249 @default.
- W3120291732 cites W2901781753 @default.
- W3120291732 cites W2952966230 @default.
- W3120291732 cites W2966857857 @default.
- W3120291732 cites W2973751923 @default.
- W3120291732 cites W2988683425 @default.
- W3120291732 cites W3000335727 @default.
- W3120291732 cites W3100690228 @default.
- W3120291732 cites W2188348729 @default.
- W3120291732 doi "https://doi.org/10.1109/inocon50539.2020.9298203" @default.
- W3120291732 hasPublicationYear "2020" @default.
- W3120291732 type Work @default.
- W3120291732 sameAs 3120291732 @default.
- W3120291732 citedByCount "0" @default.
- W3120291732 crossrefType "proceedings-article" @default.
- W3120291732 hasAuthorship W3120291732A5036749640 @default.
- W3120291732 hasAuthorship W3120291732A5077075502 @default.
- W3120291732 hasConcept C1009929 @default.
- W3120291732 hasConcept C117447612 @default.
- W3120291732 hasConcept C119857082 @default.
- W3120291732 hasConcept C12267149 @default.
- W3120291732 hasConcept C124101348 @default.
- W3120291732 hasConcept C154945302 @default.
- W3120291732 hasConcept C169258074 @default.
- W3120291732 hasConcept C191727507 @default.
- W3120291732 hasConcept C199360897 @default.
- W3120291732 hasConcept C2777904410 @default.
- W3120291732 hasConcept C41008148 @default.
- W3120291732 hasConcept C50644808 @default.
- W3120291732 hasConcept C52001869 @default.
- W3120291732 hasConcept C529173508 @default.
- W3120291732 hasConcept C84525736 @default.
- W3120291732 hasConceptScore W3120291732C1009929 @default.
- W3120291732 hasConceptScore W3120291732C117447612 @default.
- W3120291732 hasConceptScore W3120291732C119857082 @default.
- W3120291732 hasConceptScore W3120291732C12267149 @default.
- W3120291732 hasConceptScore W3120291732C124101348 @default.
- W3120291732 hasConceptScore W3120291732C154945302 @default.
- W3120291732 hasConceptScore W3120291732C169258074 @default.
- W3120291732 hasConceptScore W3120291732C191727507 @default.
- W3120291732 hasConceptScore W3120291732C199360897 @default.
- W3120291732 hasConceptScore W3120291732C2777904410 @default.
- W3120291732 hasConceptScore W3120291732C41008148 @default.
- W3120291732 hasConceptScore W3120291732C50644808 @default.
- W3120291732 hasConceptScore W3120291732C52001869 @default.
- W3120291732 hasConceptScore W3120291732C529173508 @default.
- W3120291732 hasConceptScore W3120291732C84525736 @default.
- W3120291732 hasLocation W31202917321 @default.
- W3120291732 hasOpenAccess W3120291732 @default.
- W3120291732 hasPrimaryLocation W31202917321 @default.
- W3120291732 hasRelatedWork W10014481 @default.
- W3120291732 hasRelatedWork W10715555 @default.
- W3120291732 hasRelatedWork W1362903 @default.
- W3120291732 hasRelatedWork W3040557 @default.
- W3120291732 hasRelatedWork W4680410 @default.
- W3120291732 hasRelatedWork W5983547 @default.
- W3120291732 hasRelatedWork W621929 @default.
- W3120291732 hasRelatedWork W6552940 @default.
- W3120291732 hasRelatedWork W8978006 @default.
- W3120291732 hasRelatedWork W9481221 @default.
- W3120291732 isParatext "false" @default.
- W3120291732 isRetracted "false" @default.
- W3120291732 magId "3120291732" @default.
- W3120291732 workType "article" @default.