Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120294807> ?p ?o ?g. }
- W3120294807 endingPage "e2032320" @default.
- W3120294807 startingPage "e2032320" @default.
- W3120294807 abstract "<h3>Importance</h3> Emergency medical dispatchers fail to identify approximately 25% of cases of out-of-hospital cardiac arrest (OHCA), resulting in lost opportunities to save lives by initiating cardiopulmonary resuscitation. <h3>Objective</h3> To examine how a machine learning model trained to identify OHCA and alert dispatchers during emergency calls affected OHCA recognition and response. <h3>Design, Setting, and Participants</h3> This double-masked, 2-group, randomized clinical trial analyzed all calls to emergency number 112 (equivalent to 911) in Denmark. Calls were processed by a machine learning model using speech recognition software. The machine learning model assessed ongoing calls, and calls in which the model identified OHCA were randomized. The trial was performed at Copenhagen Emergency Medical Services, Denmark, between September 1, 2018, and December 31, 2019. <h3>Intervention</h3> Dispatchers in the intervention group were alerted when the machine learning model identified out-of-hospital cardiac arrest, and those in the control group followed normal protocols without alert. <h3>Main Outcomes and Measures</h3> The primary end point was the rate of dispatcher recognition of subsequently confirmed OHCA. <h3>Results</h3> A total of 169 049 emergency calls were examined, of which the machine learning model identified 5242 as suspected OHCA. Calls were randomized to control (2661 [50.8%]) or intervention (2581 [49.2%]) groups. Of these, 336 (12.6%) and 318 (12.3%), respectively, had confirmed OHCA. The mean (SD) age among of these 654 patients was 70 (16.1) years, and 419 of 627 patients (67.8%) with known gender were men. Dispatchers in the intervention group recognized 296 confirmed OHCA cases (93.1%) with machine learning assistance compared with 304 confirmed OHCA cases (90.5%) using standard protocols without machine learning assistance (<i>P</i> = .15). Machine learning alerts alone had a significantly higher sensitivity than dispatchers without alerts for confirmed OHCA (85.0% vs 77.5%;<i>P</i> < .001) but lower specificity (97.4% vs 99.6%;<i>P</i> < .001) and positive predictive value (17.8% vs 55.8%;<i>P</i> < .001). <h3>Conclusions and Relevance</h3> This randomized clinical trial did not find any significant improvement in dispatchers’ ability to recognize cardiac arrest when supported by machine learning even though artificial intelligence did surpass human recognition. <h3>Trial Registration</h3> ClinicalTrials.gov Identifier:NCT04219306" @default.
- W3120294807 created "2021-01-18" @default.
- W3120294807 creator A5005077971 @default.
- W3120294807 creator A5031772788 @default.
- W3120294807 creator A5042670765 @default.
- W3120294807 creator A5056116775 @default.
- W3120294807 creator A5071126434 @default.
- W3120294807 creator A5075875150 @default.
- W3120294807 creator A5078618702 @default.
- W3120294807 creator A5083693038 @default.
- W3120294807 date "2021-01-06" @default.
- W3120294807 modified "2023-10-14" @default.
- W3120294807 title "Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital Cardiac Arrest During Calls to Emergency Medical Services" @default.
- W3120294807 cites W1968257895 @default.
- W3120294807 cites W1999218614 @default.
- W3120294807 cites W2000034243 @default.
- W3120294807 cites W2000522086 @default.
- W3120294807 cites W2001307401 @default.
- W3120294807 cites W2012835963 @default.
- W3120294807 cites W2025915018 @default.
- W3120294807 cites W2100420108 @default.
- W3120294807 cites W2102773848 @default.
- W3120294807 cites W2297180012 @default.
- W3120294807 cites W2603022199 @default.
- W3120294807 cites W2606093263 @default.
- W3120294807 cites W2772707283 @default.
- W3120294807 cites W2910432161 @default.
- W3120294807 cites W2922217454 @default.
- W3120294807 cites W2982580298 @default.
- W3120294807 cites W3005745869 @default.
- W3120294807 cites W4241055297 @default.
- W3120294807 doi "https://doi.org/10.1001/jamanetworkopen.2020.32320" @default.
- W3120294807 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7788469" @default.
- W3120294807 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33404620" @default.
- W3120294807 hasPublicationYear "2021" @default.
- W3120294807 type Work @default.
- W3120294807 sameAs 3120294807 @default.
- W3120294807 citedByCount "56" @default.
- W3120294807 countsByYear W31202948072021 @default.
- W3120294807 countsByYear W31202948072022 @default.
- W3120294807 countsByYear W31202948072023 @default.
- W3120294807 crossrefType "journal-article" @default.
- W3120294807 hasAuthorship W3120294807A5005077971 @default.
- W3120294807 hasAuthorship W3120294807A5031772788 @default.
- W3120294807 hasAuthorship W3120294807A5042670765 @default.
- W3120294807 hasAuthorship W3120294807A5056116775 @default.
- W3120294807 hasAuthorship W3120294807A5071126434 @default.
- W3120294807 hasAuthorship W3120294807A5075875150 @default.
- W3120294807 hasAuthorship W3120294807A5078618702 @default.
- W3120294807 hasAuthorship W3120294807A5083693038 @default.
- W3120294807 hasBestOaLocation W31202948071 @default.
- W3120294807 hasConcept C119857082 @default.
- W3120294807 hasConcept C126322002 @default.
- W3120294807 hasConcept C159110408 @default.
- W3120294807 hasConcept C168563851 @default.
- W3120294807 hasConcept C194828623 @default.
- W3120294807 hasConcept C2777055891 @default.
- W3120294807 hasConcept C2778165595 @default.
- W3120294807 hasConcept C2780665704 @default.
- W3120294807 hasConcept C2780724011 @default.
- W3120294807 hasConcept C41008148 @default.
- W3120294807 hasConcept C545288138 @default.
- W3120294807 hasConcept C545542383 @default.
- W3120294807 hasConcept C71924100 @default.
- W3120294807 hasConceptScore W3120294807C119857082 @default.
- W3120294807 hasConceptScore W3120294807C126322002 @default.
- W3120294807 hasConceptScore W3120294807C159110408 @default.
- W3120294807 hasConceptScore W3120294807C168563851 @default.
- W3120294807 hasConceptScore W3120294807C194828623 @default.
- W3120294807 hasConceptScore W3120294807C2777055891 @default.
- W3120294807 hasConceptScore W3120294807C2778165595 @default.
- W3120294807 hasConceptScore W3120294807C2780665704 @default.
- W3120294807 hasConceptScore W3120294807C2780724011 @default.
- W3120294807 hasConceptScore W3120294807C41008148 @default.
- W3120294807 hasConceptScore W3120294807C545288138 @default.
- W3120294807 hasConceptScore W3120294807C545542383 @default.
- W3120294807 hasConceptScore W3120294807C71924100 @default.
- W3120294807 hasIssue "1" @default.
- W3120294807 hasLocation W31202948071 @default.
- W3120294807 hasLocation W31202948072 @default.
- W3120294807 hasLocation W31202948073 @default.
- W3120294807 hasLocation W31202948074 @default.
- W3120294807 hasOpenAccess W3120294807 @default.
- W3120294807 hasPrimaryLocation W31202948071 @default.
- W3120294807 hasRelatedWork W2092734722 @default.
- W3120294807 hasRelatedWork W2141668586 @default.
- W3120294807 hasRelatedWork W2164384113 @default.
- W3120294807 hasRelatedWork W2166653873 @default.
- W3120294807 hasRelatedWork W2227559966 @default.
- W3120294807 hasRelatedWork W2255678829 @default.
- W3120294807 hasRelatedWork W2890334867 @default.
- W3120294807 hasRelatedWork W2946391707 @default.
- W3120294807 hasRelatedWork W3094648324 @default.
- W3120294807 hasRelatedWork W4253994026 @default.
- W3120294807 hasVolume "4" @default.
- W3120294807 isParatext "false" @default.
- W3120294807 isRetracted "false" @default.
- W3120294807 magId "3120294807" @default.