Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120309102> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3120309102 endingPage "13" @default.
- W3120309102 startingPage "4" @default.
- W3120309102 abstract "In this article, a Bayesian estimator for a target position report is proposed. It is based on a maximum a priori algorithm, where the user's device knowledge about its location is used to deduce the prior probability density function. The algorithm does not require knowledge about the signal and noise levels, meaning, noninformative priors are used. It is well known that with a higher number of antenna elements in an array, narrower beams can be formed. In beamforming, task narrow beams are useful for serving many users simultaneously, whereas in direction-of-arrival (DOA) estimation, we are not interested in narrow beams as such; instead, estimation accuracy is important. So, reducing the number of antenna elements used for DOA estimation is beneficial from a system complexity point of view. In this article, signal source location report is used to enhance the estimated DOA, for the task, MAP estimator is developed. We will show that in the case of small array size and large array covariance matrix error values, the proposed estimator is the only one capable of improving the prior knowledge about the transmitter when comparing it with other popular algorithms, such as the maximum likelihood estimator and Root MUSIC. The algorithm could be used in a variety of different scenarios, but its advantages emerge in the case of complex signal propagation environments, such as urban canyons and large airports." @default.
- W3120309102 created "2021-01-18" @default.
- W3120309102 creator A5034415657 @default.
- W3120309102 creator A5049605280 @default.
- W3120309102 date "2021-01-01" @default.
- W3120309102 modified "2023-10-17" @default.
- W3120309102 title "Position Report Enhancement Using Bayesian Estimator" @default.
- W3120309102 cites W149575133 @default.
- W3120309102 cites W1965392255 @default.
- W3120309102 cites W1997834106 @default.
- W3120309102 cites W2002347603 @default.
- W3120309102 cites W2045656233 @default.
- W3120309102 cites W2064191652 @default.
- W3120309102 cites W2103972037 @default.
- W3120309102 cites W2116334496 @default.
- W3120309102 cites W2117206394 @default.
- W3120309102 cites W2118756516 @default.
- W3120309102 cites W2155086510 @default.
- W3120309102 cites W2274517597 @default.
- W3120309102 cites W2561170789 @default.
- W3120309102 cites W2963290381 @default.
- W3120309102 cites W2995836694 @default.
- W3120309102 cites W3105281589 @default.
- W3120309102 cites W3105416263 @default.
- W3120309102 cites W3217047761 @default.
- W3120309102 doi "https://doi.org/10.1109/maes.2020.3015604" @default.
- W3120309102 hasPublicationYear "2021" @default.
- W3120309102 type Work @default.
- W3120309102 sameAs 3120309102 @default.
- W3120309102 citedByCount "0" @default.
- W3120309102 crossrefType "journal-article" @default.
- W3120309102 hasAuthorship W3120309102A5034415657 @default.
- W3120309102 hasAuthorship W3120309102A5049605280 @default.
- W3120309102 hasConcept C10138342 @default.
- W3120309102 hasConcept C105795698 @default.
- W3120309102 hasConcept C107673813 @default.
- W3120309102 hasConcept C11413529 @default.
- W3120309102 hasConcept C13944312 @default.
- W3120309102 hasConcept C154945302 @default.
- W3120309102 hasConcept C162324750 @default.
- W3120309102 hasConcept C165646398 @default.
- W3120309102 hasConcept C172051844 @default.
- W3120309102 hasConcept C177769412 @default.
- W3120309102 hasConcept C185142706 @default.
- W3120309102 hasConcept C185429906 @default.
- W3120309102 hasConcept C198082294 @default.
- W3120309102 hasConcept C21822782 @default.
- W3120309102 hasConcept C33923547 @default.
- W3120309102 hasConcept C41008148 @default.
- W3120309102 hasConcept C54197355 @default.
- W3120309102 hasConcept C62191587 @default.
- W3120309102 hasConcept C76155785 @default.
- W3120309102 hasConceptScore W3120309102C10138342 @default.
- W3120309102 hasConceptScore W3120309102C105795698 @default.
- W3120309102 hasConceptScore W3120309102C107673813 @default.
- W3120309102 hasConceptScore W3120309102C11413529 @default.
- W3120309102 hasConceptScore W3120309102C13944312 @default.
- W3120309102 hasConceptScore W3120309102C154945302 @default.
- W3120309102 hasConceptScore W3120309102C162324750 @default.
- W3120309102 hasConceptScore W3120309102C165646398 @default.
- W3120309102 hasConceptScore W3120309102C172051844 @default.
- W3120309102 hasConceptScore W3120309102C177769412 @default.
- W3120309102 hasConceptScore W3120309102C185142706 @default.
- W3120309102 hasConceptScore W3120309102C185429906 @default.
- W3120309102 hasConceptScore W3120309102C198082294 @default.
- W3120309102 hasConceptScore W3120309102C21822782 @default.
- W3120309102 hasConceptScore W3120309102C33923547 @default.
- W3120309102 hasConceptScore W3120309102C41008148 @default.
- W3120309102 hasConceptScore W3120309102C54197355 @default.
- W3120309102 hasConceptScore W3120309102C62191587 @default.
- W3120309102 hasConceptScore W3120309102C76155785 @default.
- W3120309102 hasIssue "1" @default.
- W3120309102 hasLocation W31203091021 @default.
- W3120309102 hasOpenAccess W3120309102 @default.
- W3120309102 hasPrimaryLocation W31203091021 @default.
- W3120309102 hasRelatedWork W1481855031 @default.
- W3120309102 hasRelatedWork W1989343945 @default.
- W3120309102 hasRelatedWork W2046008390 @default.
- W3120309102 hasRelatedWork W2068740773 @default.
- W3120309102 hasRelatedWork W2099152428 @default.
- W3120309102 hasRelatedWork W2283492441 @default.
- W3120309102 hasRelatedWork W2913549824 @default.
- W3120309102 hasRelatedWork W2914831441 @default.
- W3120309102 hasRelatedWork W3120309102 @default.
- W3120309102 hasRelatedWork W4321843473 @default.
- W3120309102 hasVolume "36" @default.
- W3120309102 isParatext "false" @default.
- W3120309102 isRetracted "false" @default.
- W3120309102 magId "3120309102" @default.
- W3120309102 workType "article" @default.