Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120314993> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3120314993 abstract "In this paper, our goal is to explore the performance of our curated datasets of Arabic dialect tweets (dialects from 4 main regions: Gulf, Levant, North Africa, Egypt). There are two main datasets: The Twitter Arabic Dialect dataset and the Twitter Arabic Dialect Emoji (TADE) dataset. The automatic annotation of the tweets into the 4 selected dialects is achieved by using a manually prepared lexicon for each dialect. To validate the resulting corpus, we use traditional (shallow) and deep learning classifiers for the purpose of dialect classification using a modified version of the TADE dataset. We experiment with many sound shallow classifiers including Gradient Boosting, Logistic Regression, Nearest Centroid, Decision Tree, MultinomialNB, SVM, XGB, Random Forest, and AdaBoost. For the deep learning classifiers, we use MLP and CNN. We experiment with TFIDF and word embeddings for feature selections. We validate the usefulness of our dataset via utilization in the experiments. It will be made available to the research community after publication." @default.
- W3120314993 created "2021-01-18" @default.
- W3120314993 creator A5039353523 @default.
- W3120314993 creator A5069884464 @default.
- W3120314993 date "2020-12-04" @default.
- W3120314993 modified "2023-10-14" @default.
- W3120314993 title "Colloquial Arabic Tweets: Collection, Automatic Annotation, and Classification" @default.
- W3120314993 cites W2250224884 @default.
- W3120314993 cites W2250539671 @default.
- W3120314993 cites W2409135246 @default.
- W3120314993 cites W2558208845 @default.
- W3120314993 cites W2584934697 @default.
- W3120314993 cites W2621199241 @default.
- W3120314993 cites W2625475744 @default.
- W3120314993 cites W2626590196 @default.
- W3120314993 cites W2765664019 @default.
- W3120314993 cites W2767299343 @default.
- W3120314993 cites W2783122809 @default.
- W3120314993 cites W2901770030 @default.
- W3120314993 cites W2901922204 @default.
- W3120314993 cites W2910941296 @default.
- W3120314993 cites W2948589047 @default.
- W3120314993 cites W2974335209 @default.
- W3120314993 cites W2987481153 @default.
- W3120314993 cites W2992999841 @default.
- W3120314993 cites W3019239186 @default.
- W3120314993 cites W766476750 @default.
- W3120314993 doi "https://doi.org/10.1109/ialp51396.2020.9310507" @default.
- W3120314993 hasPublicationYear "2020" @default.
- W3120314993 type Work @default.
- W3120314993 sameAs 3120314993 @default.
- W3120314993 citedByCount "4" @default.
- W3120314993 countsByYear W31203149932021 @default.
- W3120314993 countsByYear W31203149932022 @default.
- W3120314993 countsByYear W31203149932023 @default.
- W3120314993 crossrefType "proceedings-article" @default.
- W3120314993 hasAuthorship W3120314993A5039353523 @default.
- W3120314993 hasAuthorship W3120314993A5069884464 @default.
- W3120314993 hasConcept C12267149 @default.
- W3120314993 hasConcept C138885662 @default.
- W3120314993 hasConcept C141404830 @default.
- W3120314993 hasConcept C154945302 @default.
- W3120314993 hasConcept C169258074 @default.
- W3120314993 hasConcept C204321447 @default.
- W3120314993 hasConcept C2776321320 @default.
- W3120314993 hasConcept C2776401178 @default.
- W3120314993 hasConcept C2778121359 @default.
- W3120314993 hasConcept C41008148 @default.
- W3120314993 hasConcept C41895202 @default.
- W3120314993 hasConcept C46686674 @default.
- W3120314993 hasConcept C84525736 @default.
- W3120314993 hasConcept C96455323 @default.
- W3120314993 hasConceptScore W3120314993C12267149 @default.
- W3120314993 hasConceptScore W3120314993C138885662 @default.
- W3120314993 hasConceptScore W3120314993C141404830 @default.
- W3120314993 hasConceptScore W3120314993C154945302 @default.
- W3120314993 hasConceptScore W3120314993C169258074 @default.
- W3120314993 hasConceptScore W3120314993C204321447 @default.
- W3120314993 hasConceptScore W3120314993C2776321320 @default.
- W3120314993 hasConceptScore W3120314993C2776401178 @default.
- W3120314993 hasConceptScore W3120314993C2778121359 @default.
- W3120314993 hasConceptScore W3120314993C41008148 @default.
- W3120314993 hasConceptScore W3120314993C41895202 @default.
- W3120314993 hasConceptScore W3120314993C46686674 @default.
- W3120314993 hasConceptScore W3120314993C84525736 @default.
- W3120314993 hasConceptScore W3120314993C96455323 @default.
- W3120314993 hasLocation W31203149931 @default.
- W3120314993 hasOpenAccess W3120314993 @default.
- W3120314993 hasPrimaryLocation W31203149931 @default.
- W3120314993 hasRelatedWork W1996541855 @default.
- W3120314993 hasRelatedWork W2561438160 @default.
- W3120314993 hasRelatedWork W3100297620 @default.
- W3120314993 hasRelatedWork W3107479743 @default.
- W3120314993 hasRelatedWork W4246172529 @default.
- W3120314993 hasRelatedWork W4296081764 @default.
- W3120314993 hasRelatedWork W4298012357 @default.
- W3120314993 hasRelatedWork W4381414210 @default.
- W3120314993 hasRelatedWork W4382315444 @default.
- W3120314993 hasRelatedWork W4386072274 @default.
- W3120314993 isParatext "false" @default.
- W3120314993 isRetracted "false" @default.
- W3120314993 magId "3120314993" @default.
- W3120314993 workType "article" @default.