Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120322550> ?p ?o ?g. }
- W3120322550 abstract "The gold standard to assess respiration during sleep is polysomnography; a technique that is burdensome, expensive (both in analysis time and measurement costs), and difficult to repeat. Automation of respiratory analysis can improve test efficiency and enable accessible implementation opportunities worldwide. Using 9,656 polysomnography recordings from the Massachusetts General Hospital (MGH), we trained a neural network (WaveNet) based on a single respiratory effort belt to detect obstructive apnea, central apnea, hypopnea and respiratory-effort related arousals. Performance evaluation included event-based and recording-based metrics - using an apnea-hypopnea index analysis. The model was further evaluated on a public dataset, the Sleep-Heart-Health-Study-1, containing 8,455 polysomnographic recordings. For binary apnea event detection in the MGH dataset, the neural network obtained an accuracy of 95%, an apnea-hypopnea index $r^2$ of 0.89 and area under the curve for the receiver operating characteristics curve and precision-recall curve of 0.93 and 0.74, respectively. For the multiclass task, we obtained varying performances: 81% of all labeled central apneas were correctly classified, whereas this metric was 46% for obstructive apneas, 29% for respiratory effort related arousals and 16% for hypopneas. The majority of false predictions were misclassifications as another type of respiratory event. Our fully automated method can detect respiratory events and assess the apnea-hypopnea index with sufficient accuracy for clinical utilization. Differentiation of event types is more difficult and may reflect in part the complexity of human respiratory output and some degree of arbitrariness in the clinical thresholds and criteria used during manual annotation." @default.
- W3120322550 created "2021-01-18" @default.
- W3120322550 creator A5003154281 @default.
- W3120322550 creator A5009929092 @default.
- W3120322550 creator A5039407625 @default.
- W3120322550 creator A5040392626 @default.
- W3120322550 creator A5043336088 @default.
- W3120322550 creator A5064975531 @default.
- W3120322550 creator A5070622596 @default.
- W3120322550 creator A5088854761 @default.
- W3120322550 date "2021-01-12" @default.
- W3120322550 modified "2023-09-27" @default.
- W3120322550 title "Automated Respiratory Event Detection Using Deep Neural Networks." @default.
- W3120322550 cites W2009094350 @default.
- W3120322550 cites W2013405048 @default.
- W3120322550 cites W2042902807 @default.
- W3120322550 cites W2085685282 @default.
- W3120322550 cites W2108691203 @default.
- W3120322550 cites W2118023920 @default.
- W3120322550 cites W2174814355 @default.
- W3120322550 cites W2519091744 @default.
- W3120322550 cites W2766787110 @default.
- W3120322550 cites W2767106145 @default.
- W3120322550 cites W2787964244 @default.
- W3120322550 cites W2789460898 @default.
- W3120322550 cites W2789916407 @default.
- W3120322550 cites W2809137653 @default.
- W3120322550 cites W2811384326 @default.
- W3120322550 cites W2896719727 @default.
- W3120322550 cites W2899202848 @default.
- W3120322550 cites W2904418346 @default.
- W3120322550 cites W2905566041 @default.
- W3120322550 cites W2918521312 @default.
- W3120322550 cites W2936503027 @default.
- W3120322550 cites W2944769841 @default.
- W3120322550 cites W2949394964 @default.
- W3120322550 cites W2951891415 @default.
- W3120322550 cites W2959442417 @default.
- W3120322550 cites W2985634329 @default.
- W3120322550 cites W3009569212 @default.
- W3120322550 hasPublicationYear "2021" @default.
- W3120322550 type Work @default.
- W3120322550 sameAs 3120322550 @default.
- W3120322550 citedByCount "0" @default.
- W3120322550 crossrefType "posted-content" @default.
- W3120322550 hasAuthorship W3120322550A5003154281 @default.
- W3120322550 hasAuthorship W3120322550A5009929092 @default.
- W3120322550 hasAuthorship W3120322550A5039407625 @default.
- W3120322550 hasAuthorship W3120322550A5040392626 @default.
- W3120322550 hasAuthorship W3120322550A5043336088 @default.
- W3120322550 hasAuthorship W3120322550A5064975531 @default.
- W3120322550 hasAuthorship W3120322550A5070622596 @default.
- W3120322550 hasAuthorship W3120322550A5088854761 @default.
- W3120322550 hasConcept C105795698 @default.
- W3120322550 hasConcept C119857082 @default.
- W3120322550 hasConcept C126322002 @default.
- W3120322550 hasConcept C127413603 @default.
- W3120322550 hasConcept C153180895 @default.
- W3120322550 hasConcept C154945302 @default.
- W3120322550 hasConcept C164705383 @default.
- W3120322550 hasConcept C176217482 @default.
- W3120322550 hasConcept C21547014 @default.
- W3120322550 hasConcept C2777711342 @default.
- W3120322550 hasConcept C2777935920 @default.
- W3120322550 hasConcept C2778205975 @default.
- W3120322550 hasConcept C2781326671 @default.
- W3120322550 hasConcept C33923547 @default.
- W3120322550 hasConcept C40993552 @default.
- W3120322550 hasConcept C41008148 @default.
- W3120322550 hasConcept C50644808 @default.
- W3120322550 hasConcept C58471807 @default.
- W3120322550 hasConcept C71924100 @default.
- W3120322550 hasConceptScore W3120322550C105795698 @default.
- W3120322550 hasConceptScore W3120322550C119857082 @default.
- W3120322550 hasConceptScore W3120322550C126322002 @default.
- W3120322550 hasConceptScore W3120322550C127413603 @default.
- W3120322550 hasConceptScore W3120322550C153180895 @default.
- W3120322550 hasConceptScore W3120322550C154945302 @default.
- W3120322550 hasConceptScore W3120322550C164705383 @default.
- W3120322550 hasConceptScore W3120322550C176217482 @default.
- W3120322550 hasConceptScore W3120322550C21547014 @default.
- W3120322550 hasConceptScore W3120322550C2777711342 @default.
- W3120322550 hasConceptScore W3120322550C2777935920 @default.
- W3120322550 hasConceptScore W3120322550C2778205975 @default.
- W3120322550 hasConceptScore W3120322550C2781326671 @default.
- W3120322550 hasConceptScore W3120322550C33923547 @default.
- W3120322550 hasConceptScore W3120322550C40993552 @default.
- W3120322550 hasConceptScore W3120322550C41008148 @default.
- W3120322550 hasConceptScore W3120322550C50644808 @default.
- W3120322550 hasConceptScore W3120322550C58471807 @default.
- W3120322550 hasConceptScore W3120322550C71924100 @default.
- W3120322550 hasLocation W31203225501 @default.
- W3120322550 hasOpenAccess W3120322550 @default.
- W3120322550 hasPrimaryLocation W31203225501 @default.
- W3120322550 hasRelatedWork W2019146337 @default.
- W3120322550 hasRelatedWork W2046717331 @default.
- W3120322550 hasRelatedWork W2053892210 @default.
- W3120322550 hasRelatedWork W2110887261 @default.
- W3120322550 hasRelatedWork W2288229933 @default.
- W3120322550 hasRelatedWork W2535097579 @default.