Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120325119> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3120325119 abstract "One of the most challenging classifications is the waste classification. If this can be done automatically, it will have a great use in waste management industry in terms of time and cost reduction. Nowadays, 2 kinds of waste classification and separation exist, namely the manual waste classification and the automatic waste classification using various technologies. The first one can be done using human understanding and power, while the latter is in the search of suitable methods for waste classification automatically. This work aimed to optimize the waste classification using SSD-MobileNet, which is a Convolutional Neural Network architecture. The purposed waste are the plastic bottles, the glass bottles, and the metal cans. The number of image dataset used in this work is 952. The model has 24,000 steps of training and 9 hours in total. The loss value of the model is 0.2711. The model is tested on Raspberry Pi 4 with the average classification accuracy of 95% for plastic bottles, 82% for glass bottles, and 86% for metal cans. With these waste classification accuracies, this model can be used in an embedded system for waste classification." @default.
- W3120325119 created "2021-01-18" @default.
- W3120325119 creator A5043493657 @default.
- W3120325119 creator A5059917035 @default.
- W3120325119 creator A5070237641 @default.
- W3120325119 date "2020-10-21" @default.
- W3120325119 modified "2023-09-25" @default.
- W3120325119 title "Valuable Waste Classification Modeling based on SSD-MobileNet" @default.
- W3120325119 cites W2792163270 @default.
- W3120325119 cites W2943876624 @default.
- W3120325119 cites W2967357336 @default.
- W3120325119 cites W2980421292 @default.
- W3120325119 doi "https://doi.org/10.1109/incit50588.2020.9310928" @default.
- W3120325119 hasPublicationYear "2020" @default.
- W3120325119 type Work @default.
- W3120325119 sameAs 3120325119 @default.
- W3120325119 citedByCount "8" @default.
- W3120325119 countsByYear W31203251192021 @default.
- W3120325119 countsByYear W31203251192022 @default.
- W3120325119 countsByYear W31203251192023 @default.
- W3120325119 crossrefType "proceedings-article" @default.
- W3120325119 hasAuthorship W3120325119A5043493657 @default.
- W3120325119 hasAuthorship W3120325119A5059917035 @default.
- W3120325119 hasAuthorship W3120325119A5070237641 @default.
- W3120325119 hasConcept C115961682 @default.
- W3120325119 hasConcept C127413603 @default.
- W3120325119 hasConcept C154945302 @default.
- W3120325119 hasConcept C18762648 @default.
- W3120325119 hasConcept C39432304 @default.
- W3120325119 hasConcept C41008148 @default.
- W3120325119 hasConcept C50644808 @default.
- W3120325119 hasConcept C548081761 @default.
- W3120325119 hasConcept C75294576 @default.
- W3120325119 hasConcept C78519656 @default.
- W3120325119 hasConcept C81363708 @default.
- W3120325119 hasConceptScore W3120325119C115961682 @default.
- W3120325119 hasConceptScore W3120325119C127413603 @default.
- W3120325119 hasConceptScore W3120325119C154945302 @default.
- W3120325119 hasConceptScore W3120325119C18762648 @default.
- W3120325119 hasConceptScore W3120325119C39432304 @default.
- W3120325119 hasConceptScore W3120325119C41008148 @default.
- W3120325119 hasConceptScore W3120325119C50644808 @default.
- W3120325119 hasConceptScore W3120325119C548081761 @default.
- W3120325119 hasConceptScore W3120325119C75294576 @default.
- W3120325119 hasConceptScore W3120325119C78519656 @default.
- W3120325119 hasConceptScore W3120325119C81363708 @default.
- W3120325119 hasLocation W31203251191 @default.
- W3120325119 hasOpenAccess W3120325119 @default.
- W3120325119 hasPrimaryLocation W31203251191 @default.
- W3120325119 hasRelatedWork W2285788670 @default.
- W3120325119 hasRelatedWork W2428997408 @default.
- W3120325119 hasRelatedWork W2760944304 @default.
- W3120325119 hasRelatedWork W2766604260 @default.
- W3120325119 hasRelatedWork W3012393889 @default.
- W3120325119 hasRelatedWork W3014041368 @default.
- W3120325119 hasRelatedWork W3018756076 @default.
- W3120325119 hasRelatedWork W3118457286 @default.
- W3120325119 hasRelatedWork W3160711233 @default.
- W3120325119 hasRelatedWork W3189091156 @default.
- W3120325119 isParatext "false" @default.
- W3120325119 isRetracted "false" @default.
- W3120325119 magId "3120325119" @default.
- W3120325119 workType "article" @default.