Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120332616> ?p ?o ?g. }
- W3120332616 endingPage "57" @default.
- W3120332616 startingPage "49" @default.
- W3120332616 abstract "Named entity recognition (NER) plays a significant role in many applications such as information extraction, information retrieval, question answering, and even machine translation. Most of the work on NER using deep learning was done for non-Arabic languages like English and French, and only few studies focused on Arabic. This paper proposes a semi-supervised learning approach to train a BERT-based NER model using labeled and semi-labeled datasets. We compared our approach against various baselines, and state-of-the-art Arabic NER tools on three datasets: AQMAR, NEWS, and TWEETS. We report a significant improvement in F-measure for the AQMAR and the NEWS datasets, which are written in Modern Standard Arabic (MSA), and competitive results for the TWEETS dataset, which contains tweets that are mostly in the Egyptian dialect and contain many mistakes or misspellings." @default.
- W3120332616 created "2021-01-18" @default.
- W3120332616 creator A5000294197 @default.
- W3120332616 creator A5010680051 @default.
- W3120332616 creator A5018343355 @default.
- W3120332616 creator A5079100236 @default.
- W3120332616 date "2020-12-01" @default.
- W3120332616 modified "2023-09-26" @default.
- W3120332616 title "A Semi-Supervised BERT Approach for Arabic Named Entity Recognition" @default.
- W3120332616 cites W125728403 @default.
- W3120332616 cites W1505506221 @default.
- W3120332616 cites W1520131719 @default.
- W3120332616 cites W1697700638 @default.
- W3120332616 cites W1728883788 @default.
- W3120332616 cites W1814730318 @default.
- W3120332616 cites W1992004647 @default.
- W3120332616 cites W2022414723 @default.
- W3120332616 cites W2033599040 @default.
- W3120332616 cites W2100115003 @default.
- W3120332616 cites W2104912629 @default.
- W3120332616 cites W2111377268 @default.
- W3120332616 cites W2137494357 @default.
- W3120332616 cites W2138780451 @default.
- W3120332616 cites W2175108069 @default.
- W3120332616 cites W2250816155 @default.
- W3120332616 cites W2250988285 @default.
- W3120332616 cites W2407338347 @default.
- W3120332616 cites W2471147443 @default.
- W3120332616 cites W2529562092 @default.
- W3120332616 cites W2736640810 @default.
- W3120332616 cites W2773616286 @default.
- W3120332616 cites W2791193613 @default.
- W3120332616 cites W2943152387 @default.
- W3120332616 cites W3088592174 @default.
- W3120332616 cites W340195604 @default.
- W3120332616 cites W1965556299 @default.
- W3120332616 hasPublicationYear "2020" @default.
- W3120332616 type Work @default.
- W3120332616 sameAs 3120332616 @default.
- W3120332616 citedByCount "2" @default.
- W3120332616 countsByYear W31203326162021 @default.
- W3120332616 crossrefType "journal-article" @default.
- W3120332616 hasAuthorship W3120332616A5000294197 @default.
- W3120332616 hasAuthorship W3120332616A5010680051 @default.
- W3120332616 hasAuthorship W3120332616A5018343355 @default.
- W3120332616 hasAuthorship W3120332616A5079100236 @default.
- W3120332616 hasConcept C138885662 @default.
- W3120332616 hasConcept C154945302 @default.
- W3120332616 hasConcept C162324750 @default.
- W3120332616 hasConcept C187736073 @default.
- W3120332616 hasConcept C195807954 @default.
- W3120332616 hasConcept C203005215 @default.
- W3120332616 hasConcept C204321447 @default.
- W3120332616 hasConcept C23123220 @default.
- W3120332616 hasConcept C2777889803 @default.
- W3120332616 hasConcept C2778842860 @default.
- W3120332616 hasConcept C2779135771 @default.
- W3120332616 hasConcept C2780451532 @default.
- W3120332616 hasConcept C41008148 @default.
- W3120332616 hasConcept C41895202 @default.
- W3120332616 hasConcept C4554734 @default.
- W3120332616 hasConcept C96455323 @default.
- W3120332616 hasConcept C96711827 @default.
- W3120332616 hasConceptScore W3120332616C138885662 @default.
- W3120332616 hasConceptScore W3120332616C154945302 @default.
- W3120332616 hasConceptScore W3120332616C162324750 @default.
- W3120332616 hasConceptScore W3120332616C187736073 @default.
- W3120332616 hasConceptScore W3120332616C195807954 @default.
- W3120332616 hasConceptScore W3120332616C203005215 @default.
- W3120332616 hasConceptScore W3120332616C204321447 @default.
- W3120332616 hasConceptScore W3120332616C23123220 @default.
- W3120332616 hasConceptScore W3120332616C2777889803 @default.
- W3120332616 hasConceptScore W3120332616C2778842860 @default.
- W3120332616 hasConceptScore W3120332616C2779135771 @default.
- W3120332616 hasConceptScore W3120332616C2780451532 @default.
- W3120332616 hasConceptScore W3120332616C41008148 @default.
- W3120332616 hasConceptScore W3120332616C41895202 @default.
- W3120332616 hasConceptScore W3120332616C4554734 @default.
- W3120332616 hasConceptScore W3120332616C96455323 @default.
- W3120332616 hasConceptScore W3120332616C96711827 @default.
- W3120332616 hasLocation W31203326161 @default.
- W3120332616 hasOpenAccess W3120332616 @default.
- W3120332616 hasPrimaryLocation W31203326161 @default.
- W3120332616 hasRelatedWork W1140170249 @default.
- W3120332616 hasRelatedWork W2173490235 @default.
- W3120332616 hasRelatedWork W2188844526 @default.
- W3120332616 hasRelatedWork W2250619872 @default.
- W3120332616 hasRelatedWork W2402171331 @default.
- W3120332616 hasRelatedWork W2547754666 @default.
- W3120332616 hasRelatedWork W2767633796 @default.
- W3120332616 hasRelatedWork W2786010334 @default.
- W3120332616 hasRelatedWork W2793058421 @default.
- W3120332616 hasRelatedWork W2884303673 @default.
- W3120332616 hasRelatedWork W2900897701 @default.
- W3120332616 hasRelatedWork W2921848514 @default.
- W3120332616 hasRelatedWork W2949241676 @default.
- W3120332616 hasRelatedWork W3023295910 @default.
- W3120332616 hasRelatedWork W3080820686 @default.