Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120333729> ?p ?o ?g. }
- W3120333729 endingPage "105945" @default.
- W3120333729 startingPage "105945" @default.
- W3120333729 abstract "Information regarding sugarcane yield is the starting point for the application of Precision Agriculture (PA) strategies to the management of sugarcane fields. Over the years, many sugarcane yield monitoring approaches have been developed and tested, but its use is still limited. One option is to use data generated by the sugarcane harvester provided in the controller area network (CAN), which allows getting the messages related to the harvester operation. Our goal was to train and to test random forest (RF), multiple linear regression (MLR), and artificial neural network (ANN) using CAN data available on the on-board computer of the harvester. All predictive models were trained and tested using the main engine parameters: fuel consumption, engine rotation, engine power, and specific fuel consumption (SFC) as data input. A scale yield monitor was installed on the harvester elevator to provide the georeferenced yield data. The yield prediction accuracy of the predictive models using the four parameters was compared. All models followed the observed sugarcane yield and recognized the changes over the time of data collection. The MLR and ANN models have a higher error of prediction in the extreme values of yield. Over the testing time, the ANN underestimated the sugarcane yield, and the RF prediction by the engine parameters of the harvester was coming closest to the observed yield. The best results for predicting sugarcane yield by engine parameters were obtained from the RF model with a mean absolute percent error (MAPE) of 5.6%, and root mean square error (RMSE) of 7.0 Mg ha−1. The MLR and ANN models have a MAPE of 7.8% and 5.6%, respectively. All the variables were necessary for a better performance of the models; however, SFC was the most important variable for predicting sugarcane yield." @default.
- W3120333729 created "2021-01-18" @default.
- W3120333729 creator A5018055847 @default.
- W3120333729 creator A5048647116 @default.
- W3120333729 creator A5060270384 @default.
- W3120333729 creator A5086058499 @default.
- W3120333729 date "2021-02-01" @default.
- W3120333729 modified "2023-10-02" @default.
- W3120333729 title "Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches" @default.
- W3120333729 cites W1967417918 @default.
- W3120333729 cites W1972204259 @default.
- W3120333729 cites W1994727461 @default.
- W3120333729 cites W2116905012 @default.
- W3120333729 cites W2142127969 @default.
- W3120333729 cites W2161867330 @default.
- W3120333729 cites W2180359307 @default.
- W3120333729 cites W2330210323 @default.
- W3120333729 cites W2337031030 @default.
- W3120333729 cites W2442257828 @default.
- W3120333729 cites W2490834434 @default.
- W3120333729 cites W2605453469 @default.
- W3120333729 cites W2605614336 @default.
- W3120333729 cites W2618400371 @default.
- W3120333729 cites W2765395308 @default.
- W3120333729 cites W2766496617 @default.
- W3120333729 cites W2776151220 @default.
- W3120333729 cites W2792230618 @default.
- W3120333729 cites W2794648046 @default.
- W3120333729 cites W2805142011 @default.
- W3120333729 cites W2809602495 @default.
- W3120333729 cites W2884755677 @default.
- W3120333729 cites W2885770726 @default.
- W3120333729 cites W2887279382 @default.
- W3120333729 cites W2898543370 @default.
- W3120333729 cites W2902602342 @default.
- W3120333729 cites W2911964244 @default.
- W3120333729 cites W2971456001 @default.
- W3120333729 cites W2994624540 @default.
- W3120333729 cites W2995585256 @default.
- W3120333729 cites W3008916700 @default.
- W3120333729 cites W3021648618 @default.
- W3120333729 cites W3048787162 @default.
- W3120333729 cites W3079760979 @default.
- W3120333729 cites W94052953 @default.
- W3120333729 doi "https://doi.org/10.1016/j.compag.2020.105945" @default.
- W3120333729 hasPublicationYear "2021" @default.
- W3120333729 type Work @default.
- W3120333729 sameAs 3120333729 @default.
- W3120333729 citedByCount "21" @default.
- W3120333729 countsByYear W31203337292021 @default.
- W3120333729 countsByYear W31203337292022 @default.
- W3120333729 countsByYear W31203337292023 @default.
- W3120333729 crossrefType "journal-article" @default.
- W3120333729 hasAuthorship W3120333729A5018055847 @default.
- W3120333729 hasAuthorship W3120333729A5048647116 @default.
- W3120333729 hasAuthorship W3120333729A5060270384 @default.
- W3120333729 hasAuthorship W3120333729A5086058499 @default.
- W3120333729 hasConcept C105795698 @default.
- W3120333729 hasConcept C118518473 @default.
- W3120333729 hasConcept C119857082 @default.
- W3120333729 hasConcept C120217122 @default.
- W3120333729 hasConcept C127413603 @default.
- W3120333729 hasConcept C134121241 @default.
- W3120333729 hasConcept C136360083 @default.
- W3120333729 hasConcept C139945424 @default.
- W3120333729 hasConcept C150217764 @default.
- W3120333729 hasConcept C152877465 @default.
- W3120333729 hasConcept C18903297 @default.
- W3120333729 hasConcept C191897082 @default.
- W3120333729 hasConcept C192562407 @default.
- W3120333729 hasConcept C33923547 @default.
- W3120333729 hasConcept C41008148 @default.
- W3120333729 hasConcept C45804977 @default.
- W3120333729 hasConcept C50644808 @default.
- W3120333729 hasConcept C78519656 @default.
- W3120333729 hasConcept C86803240 @default.
- W3120333729 hasConceptScore W3120333729C105795698 @default.
- W3120333729 hasConceptScore W3120333729C118518473 @default.
- W3120333729 hasConceptScore W3120333729C119857082 @default.
- W3120333729 hasConceptScore W3120333729C120217122 @default.
- W3120333729 hasConceptScore W3120333729C127413603 @default.
- W3120333729 hasConceptScore W3120333729C134121241 @default.
- W3120333729 hasConceptScore W3120333729C136360083 @default.
- W3120333729 hasConceptScore W3120333729C139945424 @default.
- W3120333729 hasConceptScore W3120333729C150217764 @default.
- W3120333729 hasConceptScore W3120333729C152877465 @default.
- W3120333729 hasConceptScore W3120333729C18903297 @default.
- W3120333729 hasConceptScore W3120333729C191897082 @default.
- W3120333729 hasConceptScore W3120333729C192562407 @default.
- W3120333729 hasConceptScore W3120333729C33923547 @default.
- W3120333729 hasConceptScore W3120333729C41008148 @default.
- W3120333729 hasConceptScore W3120333729C45804977 @default.
- W3120333729 hasConceptScore W3120333729C50644808 @default.
- W3120333729 hasConceptScore W3120333729C78519656 @default.
- W3120333729 hasConceptScore W3120333729C86803240 @default.
- W3120333729 hasFunder F4320320997 @default.
- W3120333729 hasFunder F4320321091 @default.
- W3120333729 hasFunder F4320322025 @default.