Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120342801> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3120342801 endingPage "91" @default.
- W3120342801 startingPage "83" @default.
- W3120342801 abstract "Language makes human communication possible. Apart from everyday applications, language can provide insights into individuals’ thinking and reasoning. Machine-based analyses of text are becoming widespread in business applications, but their utility in learning contexts are a neglected area of research. Therefore, the goal of the present work is to explore machine-assisted approaches to aid in the analysis of students’ written compositions. A method for extracting common topics from written text is applied to 78 student papers on technology and ethics. The primary tool for analysis is the Latent Dirichlet Allocation algorithm. The results suggest that this machine-based topic extraction method is effective and supports a promising prospect for enhancing classroom learning and instruction. The method may also prove beneficial in other applied applications, like those in clinical and counseling practice.
 References
 
 Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993-1022.
 Bruner, J. (1990). Acts of meaning. Cambridge, MA: Harvard University Press.
 Chen, K. Y. M., & Wang, Y. (2007). Latent dirichlet allocation. http://acsweb.ucsd.edu/~yuw176/ report/lda.pdf.
 Chung, C. K., & Pennebaker, J. W. (2008). Revealing dimensions of thinking in open-ended self-descriptions: An automated meaning extraction method for natural language. Journal of research in personality, 42(1), 96-132.
 Feldman, S. (1999). NLP meets the Jabberwocky: Natural language processing in information retrieval. Online Magazine, 23, 62-73. Retrieved from: http://www.onlinemag.net/OL1999/ feldmann5.html
 Mishlove, J. (2010). https://www.youtube.com/watch?v=0XTDLq34M18 (Accessed June 12, 2018).
 Ostrowski, D. A. (2015). Using latent dirichlet allocation for topic modelling in twitter. In Semantic Computing (ICSC), 2015 IEEE International Conference (pp. 493-497). IEEE.
 Pennebaker, J. W. (2004). Theories, therapies, and taxpayers: On the complexities of the expressive writing paradigm. Clinical Psychology: Science and Practice, 11(2), 138-142.
 Pennebaker, J.W., Boyd, R.L., Jordan, K., & Blackburn, K. (2015). The development and psychometric properties of LIWC 2015. Austin, TX: University of Texas at Austin.
 Pennebaker, J. W., Chung, C. K., Frazee, J., Lavergne, G. M., & Beaver, D. I. (2014). When small words foretell academic success: The case of college admissions essays. PLoS ONE, 9(12), e115844.
 Pennebaker, J. W., & King, L. A. (1999). Linguistic styles: Language use as an individual difference. Journal of Personality and Social Psychology, 77(6), 1296-1312.
 Recchia, G., Sahlgren, M., Kanerva, P., & Jones, M. N. (2015). Encoding sequential information in semantic space models: Comparing holographic reduced representation and random permutation. Computational intelligence and neuroscience, 2015, 1-18.
 Salzmann, Z. (2004). Language, Culture, and Society: An Introduction to Linguistic Anthropology (3rd ed). Westview Press.
 Schank, R. C., Goldman, N. M., Rieger III, C. J., & Riesbeck, C. (1973). MARGIE: Memory analysis response generation, and inference on English. In IJCAI, 3, 255-261.
 Taraban, R., Marcy, W. M., LaCour Jr., M. S., & Burgess II, R. A. (2017). Developing machine-assisted analysis of engineering students’ ethics course assignments. Proceedings of the American Society of Engineering Education (ASEE) Annual Conference, Columbus, OH. https://www.asee.org/public/conferences/78/papers/19234/view.
 Taraban, R., Marcy, W. M., LaCour, M. S., Pashley, D., & Keim, K. (2018). Do engineering students learn ethics from an ethics course? Proceedings of the American Society of Engineering Education – Gulf Southwest (ASEE-GSW) Annual Conference, Austin, TX. http://www.aseegsw18.com/papers.html.
 Taraban, R., & Marshall, P. H. (2017). Deep learning and competition in psycholinguistic research. East European Journal of Psycholinguistics, 4(2), 67-74.
 Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45.
 Winograd, T. (1972). Understanding natural language. New York: Academic Press.
" @default.
- W3120342801 created "2021-01-18" @default.
- W3120342801 creator A5022045399 @default.
- W3120342801 creator A5041091176 @default.
- W3120342801 creator A5041416049 @default.
- W3120342801 creator A5064810314 @default.
- W3120342801 date "2018-06-30" @default.
- W3120342801 modified "2023-09-26" @default.
- W3120342801 title "Finding a Common Ground in Human and Machine-Based Text Processing" @default.
- W3120342801 doi "https://doi.org/10.29038/eejpl.2018.5.1.tar" @default.
- W3120342801 hasPublicationYear "2018" @default.
- W3120342801 type Work @default.
- W3120342801 sameAs 3120342801 @default.
- W3120342801 citedByCount "1" @default.
- W3120342801 countsByYear W31203428012021 @default.
- W3120342801 crossrefType "journal-article" @default.
- W3120342801 hasAuthorship W3120342801A5022045399 @default.
- W3120342801 hasAuthorship W3120342801A5041091176 @default.
- W3120342801 hasAuthorship W3120342801A5041416049 @default.
- W3120342801 hasAuthorship W3120342801A5064810314 @default.
- W3120342801 hasBestOaLocation W31203428011 @default.
- W3120342801 hasConcept C119857082 @default.
- W3120342801 hasConcept C154945302 @default.
- W3120342801 hasConcept C15744967 @default.
- W3120342801 hasConcept C171686336 @default.
- W3120342801 hasConcept C195807954 @default.
- W3120342801 hasConcept C204321447 @default.
- W3120342801 hasConcept C2780876879 @default.
- W3120342801 hasConcept C41008148 @default.
- W3120342801 hasConcept C500882744 @default.
- W3120342801 hasConcept C542102704 @default.
- W3120342801 hasConceptScore W3120342801C119857082 @default.
- W3120342801 hasConceptScore W3120342801C154945302 @default.
- W3120342801 hasConceptScore W3120342801C15744967 @default.
- W3120342801 hasConceptScore W3120342801C171686336 @default.
- W3120342801 hasConceptScore W3120342801C195807954 @default.
- W3120342801 hasConceptScore W3120342801C204321447 @default.
- W3120342801 hasConceptScore W3120342801C2780876879 @default.
- W3120342801 hasConceptScore W3120342801C41008148 @default.
- W3120342801 hasConceptScore W3120342801C500882744 @default.
- W3120342801 hasConceptScore W3120342801C542102704 @default.
- W3120342801 hasIssue "1" @default.
- W3120342801 hasLocation W31203428011 @default.
- W3120342801 hasLocation W31203428012 @default.
- W3120342801 hasOpenAccess W3120342801 @default.
- W3120342801 hasPrimaryLocation W31203428011 @default.
- W3120342801 hasRelatedWork W142374489 @default.
- W3120342801 hasRelatedWork W2148086098 @default.
- W3120342801 hasRelatedWork W2368651715 @default.
- W3120342801 hasRelatedWork W2401312492 @default.
- W3120342801 hasRelatedWork W2753827282 @default.
- W3120342801 hasRelatedWork W2884815824 @default.
- W3120342801 hasRelatedWork W2947781947 @default.
- W3120342801 hasRelatedWork W2950766905 @default.
- W3120342801 hasRelatedWork W3047601251 @default.
- W3120342801 hasRelatedWork W3107474891 @default.
- W3120342801 hasVolume "5" @default.
- W3120342801 isParatext "false" @default.
- W3120342801 isRetracted "false" @default.
- W3120342801 magId "3120342801" @default.
- W3120342801 workType "article" @default.