Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120347844> ?p ?o ?g. }
- W3120347844 endingPage "1561" @default.
- W3120347844 startingPage "1550" @default.
- W3120347844 abstract "Jitter is one of the crucial factors used to characterize high-speed serial links and integrated circuit performance. Jitter decomposition is key tool with which to characterize jitter at a given bit error rate (BER). In this article, a novel jitter decomposition algorithm is proposed using convolutional neural networks to decompose random jitter (RJ) and deterministic jitter (DJ) by images of a jitter histogram, and predict the total jitter (TJ) at a BER of 10 <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>−12</sup> . The jitter histogram – that is, training data – is obtained by modeling the high-speed serial link in an advanced design system. The test results verify the feasibility and accuracy of the proposed method. The RJ mean absolute error (MAE) of the test is 0.8721 ps and the error rate 6.74%, and the DJ MAE is 4.8684 ps and the error rate 2.03%, and TJ MAE is 8.9406 ps and the average error rate 2.13%. In addition, results show that the effectiveness of the proposed method is better than most other jitter decomposition methods by evaluating the average error rate." @default.
- W3120347844 created "2021-01-18" @default.
- W3120347844 creator A5008363304 @default.
- W3120347844 creator A5033295559 @default.
- W3120347844 creator A5040571070 @default.
- W3120347844 creator A5068826180 @default.
- W3120347844 creator A5069517322 @default.
- W3120347844 creator A5080812899 @default.
- W3120347844 date "2021-10-01" @default.
- W3120347844 modified "2023-10-16" @default.
- W3120347844 title "Jitter Decomposition by Convolutional Neural Networks" @default.
- W3120347844 cites W1623544522 @default.
- W3120347844 cites W1677182931 @default.
- W3120347844 cites W1981535088 @default.
- W3120347844 cites W1994393408 @default.
- W3120347844 cites W2039240409 @default.
- W3120347844 cites W2045033465 @default.
- W3120347844 cites W2045051338 @default.
- W3120347844 cites W2102148524 @default.
- W3120347844 cites W2123162799 @default.
- W3120347844 cites W2137788859 @default.
- W3120347844 cites W2158499992 @default.
- W3120347844 cites W2162364319 @default.
- W3120347844 cites W2460589855 @default.
- W3120347844 cites W2510718891 @default.
- W3120347844 cites W2532366975 @default.
- W3120347844 cites W2535044422 @default.
- W3120347844 cites W2588756236 @default.
- W3120347844 cites W2618530766 @default.
- W3120347844 cites W2689496271 @default.
- W3120347844 cites W2781505583 @default.
- W3120347844 cites W2791757323 @default.
- W3120347844 cites W2791908750 @default.
- W3120347844 cites W2800248381 @default.
- W3120347844 cites W2889099542 @default.
- W3120347844 cites W2905105139 @default.
- W3120347844 cites W2913152041 @default.
- W3120347844 cites W2945722260 @default.
- W3120347844 cites W2972248594 @default.
- W3120347844 cites W2986118620 @default.
- W3120347844 cites W3093822100 @default.
- W3120347844 doi "https://doi.org/10.1109/temc.2020.3047080" @default.
- W3120347844 hasPublicationYear "2021" @default.
- W3120347844 type Work @default.
- W3120347844 sameAs 3120347844 @default.
- W3120347844 citedByCount "10" @default.
- W3120347844 countsByYear W31203478442021 @default.
- W3120347844 countsByYear W31203478442022 @default.
- W3120347844 countsByYear W31203478442023 @default.
- W3120347844 crossrefType "journal-article" @default.
- W3120347844 hasAuthorship W3120347844A5008363304 @default.
- W3120347844 hasAuthorship W3120347844A5033295559 @default.
- W3120347844 hasAuthorship W3120347844A5040571070 @default.
- W3120347844 hasAuthorship W3120347844A5068826180 @default.
- W3120347844 hasAuthorship W3120347844A5069517322 @default.
- W3120347844 hasAuthorship W3120347844A5080812899 @default.
- W3120347844 hasConcept C11413529 @default.
- W3120347844 hasConcept C115961682 @default.
- W3120347844 hasConcept C127413603 @default.
- W3120347844 hasConcept C134652429 @default.
- W3120347844 hasConcept C154945302 @default.
- W3120347844 hasConcept C24326235 @default.
- W3120347844 hasConcept C40969351 @default.
- W3120347844 hasConcept C41008148 @default.
- W3120347844 hasConcept C53533937 @default.
- W3120347844 hasConcept C56296756 @default.
- W3120347844 hasConcept C57273362 @default.
- W3120347844 hasConcept C76155785 @default.
- W3120347844 hasConcept C81363708 @default.
- W3120347844 hasConceptScore W3120347844C11413529 @default.
- W3120347844 hasConceptScore W3120347844C115961682 @default.
- W3120347844 hasConceptScore W3120347844C127413603 @default.
- W3120347844 hasConceptScore W3120347844C134652429 @default.
- W3120347844 hasConceptScore W3120347844C154945302 @default.
- W3120347844 hasConceptScore W3120347844C24326235 @default.
- W3120347844 hasConceptScore W3120347844C40969351 @default.
- W3120347844 hasConceptScore W3120347844C41008148 @default.
- W3120347844 hasConceptScore W3120347844C53533937 @default.
- W3120347844 hasConceptScore W3120347844C56296756 @default.
- W3120347844 hasConceptScore W3120347844C57273362 @default.
- W3120347844 hasConceptScore W3120347844C76155785 @default.
- W3120347844 hasConceptScore W3120347844C81363708 @default.
- W3120347844 hasFunder F4320321001 @default.
- W3120347844 hasIssue "5" @default.
- W3120347844 hasLocation W31203478441 @default.
- W3120347844 hasOpenAccess W3120347844 @default.
- W3120347844 hasPrimaryLocation W31203478441 @default.
- W3120347844 hasRelatedWork W1515821088 @default.
- W3120347844 hasRelatedWork W2135845527 @default.
- W3120347844 hasRelatedWork W2144343732 @default.
- W3120347844 hasRelatedWork W2148146929 @default.
- W3120347844 hasRelatedWork W2158301620 @default.
- W3120347844 hasRelatedWork W2161207291 @default.
- W3120347844 hasRelatedWork W2330725330 @default.
- W3120347844 hasRelatedWork W2366343635 @default.
- W3120347844 hasRelatedWork W2795159893 @default.
- W3120347844 hasRelatedWork W2980895366 @default.
- W3120347844 hasVolume "63" @default.