Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120360074> ?p ?o ?g. }
- W3120360074 endingPage "250" @default.
- W3120360074 startingPage "237" @default.
- W3120360074 abstract "Big data sets in conjunction with self-learning algorithms are becoming increasingly important in public administration. A growing body of literature demonstrates that the use of such technologies poses fundamental questions about the way in which predictions are generated, and the extent to which such predictions may be used in policy making. Complementing other recent works, the goal of this article is to open the machine’s black box to understand and critically examine how self-learning algorithms gain agency by transforming raw data into policy recommendations that are then used by policy makers. I identify five major concerns and discuss the implications for policy making." @default.
- W3120360074 created "2021-01-18" @default.
- W3120360074 creator A5014463806 @default.
- W3120360074 date "2021-08-17" @default.
- W3120360074 modified "2023-10-02" @default.
- W3120360074 title "Soul of a new machine: Self-learning algorithms in public administration" @default.
- W3120360074 cites W1230390022 @default.
- W3120360074 cites W1500693574 @default.
- W3120360074 cites W1643373020 @default.
- W3120360074 cites W1758651971 @default.
- W3120360074 cites W1966927117 @default.
- W3120360074 cites W1973919476 @default.
- W3120360074 cites W1984352803 @default.
- W3120360074 cites W1984397182 @default.
- W3120360074 cites W1992444749 @default.
- W3120360074 cites W2013860076 @default.
- W3120360074 cites W2014878936 @default.
- W3120360074 cites W2036490790 @default.
- W3120360074 cites W2061794161 @default.
- W3120360074 cites W2077324994 @default.
- W3120360074 cites W2085821602 @default.
- W3120360074 cites W21117274 @default.
- W3120360074 cites W2122963961 @default.
- W3120360074 cites W2141977605 @default.
- W3120360074 cites W2142610581 @default.
- W3120360074 cites W2144847629 @default.
- W3120360074 cites W2146948159 @default.
- W3120360074 cites W2167984346 @default.
- W3120360074 cites W2171178848 @default.
- W3120360074 cites W2193121729 @default.
- W3120360074 cites W2317763868 @default.
- W3120360074 cites W2321062376 @default.
- W3120360074 cites W2336171935 @default.
- W3120360074 cites W2339645179 @default.
- W3120360074 cites W2474930743 @default.
- W3120360074 cites W2504131390 @default.
- W3120360074 cites W2557671501 @default.
- W3120360074 cites W2560698798 @default.
- W3120360074 cites W2570774740 @default.
- W3120360074 cites W2605739715 @default.
- W3120360074 cites W2619402473 @default.
- W3120360074 cites W2619503097 @default.
- W3120360074 cites W2621921499 @default.
- W3120360074 cites W2622749537 @default.
- W3120360074 cites W2742306415 @default.
- W3120360074 cites W2744458871 @default.
- W3120360074 cites W2753975405 @default.
- W3120360074 cites W2764436181 @default.
- W3120360074 cites W2884686506 @default.
- W3120360074 cites W2887752602 @default.
- W3120360074 cites W2888216970 @default.
- W3120360074 cites W2893425640 @default.
- W3120360074 cites W2897312458 @default.
- W3120360074 cites W2911415481 @default.
- W3120360074 cites W2920893895 @default.
- W3120360074 cites W2969153997 @default.
- W3120360074 cites W3017205423 @default.
- W3120360074 cites W3024167810 @default.
- W3120360074 cites W3031283198 @default.
- W3120360074 cites W3036911563 @default.
- W3120360074 cites W3046077792 @default.
- W3120360074 cites W3122548859 @default.
- W3120360074 cites W3124513011 @default.
- W3120360074 doi "https://doi.org/10.3233/ip-200224" @default.
- W3120360074 hasPublicationYear "2021" @default.
- W3120360074 type Work @default.
- W3120360074 sameAs 3120360074 @default.
- W3120360074 citedByCount "4" @default.
- W3120360074 countsByYear W31203600742022 @default.
- W3120360074 countsByYear W31203600742023 @default.
- W3120360074 crossrefType "journal-article" @default.
- W3120360074 hasAuthorship W3120360074A5014463806 @default.
- W3120360074 hasBestOaLocation W31203600741 @default.
- W3120360074 hasConcept C108170787 @default.
- W3120360074 hasConcept C109986646 @default.
- W3120360074 hasConcept C111472728 @default.
- W3120360074 hasConcept C11413529 @default.
- W3120360074 hasConcept C124101348 @default.
- W3120360074 hasConcept C132964779 @default.
- W3120360074 hasConcept C138885662 @default.
- W3120360074 hasConcept C144024400 @default.
- W3120360074 hasConcept C154945302 @default.
- W3120360074 hasConcept C17744445 @default.
- W3120360074 hasConcept C199360897 @default.
- W3120360074 hasConcept C199539241 @default.
- W3120360074 hasConcept C2780822299 @default.
- W3120360074 hasConcept C36289849 @default.
- W3120360074 hasConcept C41008148 @default.
- W3120360074 hasConcept C75684735 @default.
- W3120360074 hasConcept C94966114 @default.
- W3120360074 hasConceptScore W3120360074C108170787 @default.
- W3120360074 hasConceptScore W3120360074C109986646 @default.
- W3120360074 hasConceptScore W3120360074C111472728 @default.
- W3120360074 hasConceptScore W3120360074C11413529 @default.
- W3120360074 hasConceptScore W3120360074C124101348 @default.
- W3120360074 hasConceptScore W3120360074C132964779 @default.
- W3120360074 hasConceptScore W3120360074C138885662 @default.
- W3120360074 hasConceptScore W3120360074C144024400 @default.