Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120362310> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3120362310 abstract "We study and classify the purely parabolic discrete subgroups of ${rm PSL}(3,Bbb{C})$. This includes all discrete subgroups of the Heisenberg group ${rm Heis}(3,Bbb{C})$. While for ${rm PSL}(2,Bbb{C})$ every purely parabolic subgroup is Abelian and acts on $Bbb{P}^1_{Bbb{C}}$ with limit set a single point, the case of ${rm PSL}(3,Bbb{C})$ is far more subtle and intriguing. We show that there are twelve classes of purely parabolic discrete groups in ${rm PSL}(3,Bbb{C})$, and we classify them. We use first the Tits Alternative and Borel's fixed point theorem to show that all purely parabolic discrete groups in ${rm PSL}(3,Bbb{C})$ are virtually triangularizable; this extends a Theorem by Lie-Kolchin. Then we prove that purely parabolic groups in ${rm PSL}(3,Bbb{C})$ are virtually solvable and cocyclic, hence finitely presented. We then prove a Tits-inspired alternative for these groups: they are either virtually unipotent or else Abelian of rank 2 and of a very special type. All the virtually unipotent ones turn out to be conjugate to subgroups of the Heisenberg group ${rm Heis}(3,Bbb{C})$. We classify these using the obstructor dimension introduced by Bestvina, Kapovich and Kleiner. We find that their Kulkarni limit set is either a projective line, a cone of lines with base an Euclidean circle, or else the whole $Bbb{P}^2_{Bbb{c}}$. We determine its relation with the Conze-Givarc'h limit set of the action on the dual projective space $(Bbb{P}^2)^*$. We show that in all cases the Kulkarni region of discontinuity is the largest open set where the group acts properly discontinuously, and that in all cases but one, this set coincides with the equicontinuity region." @default.
- W3120362310 created "2021-01-18" @default.
- W3120362310 creator A5026149460 @default.
- W3120362310 creator A5037740636 @default.
- W3120362310 creator A5081976144 @default.
- W3120362310 creator A5088565098 @default.
- W3120362310 date "2018-02-23" @default.
- W3120362310 modified "2023-09-27" @default.
- W3120362310 title "Discrete subgroups of the Heisenberg group ${rm Heis}(3,Bbb{C})$ and purely parabolic groups in ${rm PSL}(3, Bbb{C})$" @default.
- W3120362310 cites W1530877435 @default.
- W3120362310 cites W184286686 @default.
- W3120362310 cites W1972945662 @default.
- W3120362310 cites W1982659418 @default.
- W3120362310 cites W2040034546 @default.
- W3120362310 cites W2041103407 @default.
- W3120362310 cites W2105776550 @default.
- W3120362310 cites W2121942368 @default.
- W3120362310 cites W2122164683 @default.
- W3120362310 cites W2150986573 @default.
- W3120362310 cites W2316549649 @default.
- W3120362310 cites W2585330150 @default.
- W3120362310 cites W2963437892 @default.
- W3120362310 cites W2993574161 @default.
- W3120362310 cites W3105169708 @default.
- W3120362310 cites W3124943163 @default.
- W3120362310 cites W406171554 @default.
- W3120362310 cites W2315086995 @default.
- W3120362310 hasPublicationYear "2018" @default.
- W3120362310 type Work @default.
- W3120362310 sameAs 3120362310 @default.
- W3120362310 citedByCount "2" @default.
- W3120362310 countsByYear W31203623102019 @default.
- W3120362310 countsByYear W31203623102021 @default.
- W3120362310 crossrefType "posted-content" @default.
- W3120362310 hasAuthorship W3120362310A5026149460 @default.
- W3120362310 hasAuthorship W3120362310A5037740636 @default.
- W3120362310 hasAuthorship W3120362310A5081976144 @default.
- W3120362310 hasAuthorship W3120362310A5088565098 @default.
- W3120362310 hasConcept C10464949 @default.
- W3120362310 hasConcept C114614502 @default.
- W3120362310 hasConcept C121332964 @default.
- W3120362310 hasConcept C127519595 @default.
- W3120362310 hasConcept C136170076 @default.
- W3120362310 hasConcept C202444582 @default.
- W3120362310 hasConcept C205633959 @default.
- W3120362310 hasConcept C2781311116 @default.
- W3120362310 hasConcept C33923547 @default.
- W3120362310 hasConcept C62520636 @default.
- W3120362310 hasConceptScore W3120362310C10464949 @default.
- W3120362310 hasConceptScore W3120362310C114614502 @default.
- W3120362310 hasConceptScore W3120362310C121332964 @default.
- W3120362310 hasConceptScore W3120362310C127519595 @default.
- W3120362310 hasConceptScore W3120362310C136170076 @default.
- W3120362310 hasConceptScore W3120362310C202444582 @default.
- W3120362310 hasConceptScore W3120362310C205633959 @default.
- W3120362310 hasConceptScore W3120362310C2781311116 @default.
- W3120362310 hasConceptScore W3120362310C33923547 @default.
- W3120362310 hasConceptScore W3120362310C62520636 @default.
- W3120362310 hasLocation W31203623101 @default.
- W3120362310 hasOpenAccess W3120362310 @default.
- W3120362310 hasPrimaryLocation W31203623101 @default.
- W3120362310 hasRelatedWork W1525654190 @default.
- W3120362310 hasRelatedWork W1660438011 @default.
- W3120362310 hasRelatedWork W1995284882 @default.
- W3120362310 hasRelatedWork W2019576563 @default.
- W3120362310 hasRelatedWork W2023844945 @default.
- W3120362310 hasRelatedWork W2056146277 @default.
- W3120362310 hasRelatedWork W2065445727 @default.
- W3120362310 hasRelatedWork W2131750857 @default.
- W3120362310 hasRelatedWork W2282478951 @default.
- W3120362310 hasRelatedWork W2322836023 @default.
- W3120362310 hasRelatedWork W2771018779 @default.
- W3120362310 hasRelatedWork W2949826472 @default.
- W3120362310 hasRelatedWork W2950225142 @default.
- W3120362310 hasRelatedWork W2963294125 @default.
- W3120362310 hasRelatedWork W3021155682 @default.
- W3120362310 hasRelatedWork W3104797370 @default.
- W3120362310 hasRelatedWork W3104893810 @default.
- W3120362310 hasRelatedWork W3120503560 @default.
- W3120362310 hasRelatedWork W3158737735 @default.
- W3120362310 hasRelatedWork W2361761646 @default.
- W3120362310 isParatext "false" @default.
- W3120362310 isRetracted "false" @default.
- W3120362310 magId "3120362310" @default.
- W3120362310 workType "article" @default.