Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120368727> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3120368727 abstract "Entity Resolution (ER) identifies records that refer to the same real-world entity. Deep learning approaches improved the generalization ability of entity matching models, but hardly overcame the impact of noisy or incomplete data sources. In real scenes, an entity usually consists of multiple semantic facets, called aspects. In this paper, we focus on entity augmentation, namely retrieving the values of missing aspects. The relationship between aspects is naturally suitable to be represented by a knowledge graph, where entity augmentation can be modeled as a link prediction problem. Our paper proposes a novel graph-based approach to solve entity augmentation. Specifically, we apply a dedicated random walk algorithm, which uses node types to limit the traversal length, and encodes graph structure into low-dimensional embeddings. Thus, the missing aspects could be retrieved by a link prediction model. Furthermore, the augmented aspects with fixed orders are served as the input of a deep Siamese BiLSTM network for entity matching. We compared our method with state-of-the-art methods through extensive experiments on downstream ER tasks. According to the experiment results, our model outperforms other methods on evaluation metrics (accuracy, precision, recall, and f1-score) to a large extent, which demonstrates the effectiveness of our method." @default.
- W3120368727 created "2021-01-18" @default.
- W3120368727 creator A5013517150 @default.
- W3120368727 creator A5035519525 @default.
- W3120368727 creator A5038668215 @default.
- W3120368727 creator A5042056886 @default.
- W3120368727 creator A5062834949 @default.
- W3120368727 creator A5069728539 @default.
- W3120368727 date "2020-01-01" @default.
- W3120368727 modified "2023-09-23" @default.
- W3120368727 title "Graph-based Aspect Representation Learning for Entity Resolution" @default.
- W3120368727 cites W2393319904 @default.
- W3120368727 cites W2470673105 @default.
- W3120368727 cites W2523679382 @default.
- W3120368727 cites W2607500032 @default.
- W3120368727 cites W2768029001 @default.
- W3120368727 cites W2798649495 @default.
- W3120368727 cites W2798666412 @default.
- W3120368727 cites W2811124557 @default.
- W3120368727 cites W2946504770 @default.
- W3120368727 cites W2962690088 @default.
- W3120368727 cites W2962756421 @default.
- W3120368727 cites W2963432357 @default.
- W3120368727 cites W2963757395 @default.
- W3120368727 cites W2963844113 @default.
- W3120368727 cites W3029621839 @default.
- W3120368727 cites W3034997167 @default.
- W3120368727 cites W3104097132 @default.
- W3120368727 cites W3105705953 @default.
- W3120368727 cites W3106020963 @default.
- W3120368727 cites W3155661706 @default.
- W3120368727 doi "https://doi.org/10.18653/v1/2020.textgraphs-1.2" @default.
- W3120368727 hasPublicationYear "2020" @default.
- W3120368727 type Work @default.
- W3120368727 sameAs 3120368727 @default.
- W3120368727 citedByCount "0" @default.
- W3120368727 crossrefType "proceedings-article" @default.
- W3120368727 hasAuthorship W3120368727A5013517150 @default.
- W3120368727 hasAuthorship W3120368727A5035519525 @default.
- W3120368727 hasAuthorship W3120368727A5038668215 @default.
- W3120368727 hasAuthorship W3120368727A5042056886 @default.
- W3120368727 hasAuthorship W3120368727A5062834949 @default.
- W3120368727 hasAuthorship W3120368727A5069728539 @default.
- W3120368727 hasBestOaLocation W31203687271 @default.
- W3120368727 hasConcept C105795698 @default.
- W3120368727 hasConcept C108583219 @default.
- W3120368727 hasConcept C11413529 @default.
- W3120368727 hasConcept C119857082 @default.
- W3120368727 hasConcept C124101348 @default.
- W3120368727 hasConcept C132525143 @default.
- W3120368727 hasConcept C140745168 @default.
- W3120368727 hasConcept C154945302 @default.
- W3120368727 hasConcept C165064840 @default.
- W3120368727 hasConcept C33923547 @default.
- W3120368727 hasConcept C41008148 @default.
- W3120368727 hasConcept C4554734 @default.
- W3120368727 hasConcept C80444323 @default.
- W3120368727 hasConcept C81669768 @default.
- W3120368727 hasConcept C96711827 @default.
- W3120368727 hasConceptScore W3120368727C105795698 @default.
- W3120368727 hasConceptScore W3120368727C108583219 @default.
- W3120368727 hasConceptScore W3120368727C11413529 @default.
- W3120368727 hasConceptScore W3120368727C119857082 @default.
- W3120368727 hasConceptScore W3120368727C124101348 @default.
- W3120368727 hasConceptScore W3120368727C132525143 @default.
- W3120368727 hasConceptScore W3120368727C140745168 @default.
- W3120368727 hasConceptScore W3120368727C154945302 @default.
- W3120368727 hasConceptScore W3120368727C165064840 @default.
- W3120368727 hasConceptScore W3120368727C33923547 @default.
- W3120368727 hasConceptScore W3120368727C41008148 @default.
- W3120368727 hasConceptScore W3120368727C4554734 @default.
- W3120368727 hasConceptScore W3120368727C80444323 @default.
- W3120368727 hasConceptScore W3120368727C81669768 @default.
- W3120368727 hasConceptScore W3120368727C96711827 @default.
- W3120368727 hasLocation W31203687271 @default.
- W3120368727 hasOpenAccess W3120368727 @default.
- W3120368727 hasPrimaryLocation W31203687271 @default.
- W3120368727 hasRelatedWork W10914757 @default.
- W3120368727 hasRelatedWork W10934236 @default.
- W3120368727 hasRelatedWork W11189869 @default.
- W3120368727 hasRelatedWork W11644230 @default.
- W3120368727 hasRelatedWork W12712126 @default.
- W3120368727 hasRelatedWork W12912828 @default.
- W3120368727 hasRelatedWork W2956227 @default.
- W3120368727 hasRelatedWork W4505823 @default.
- W3120368727 hasRelatedWork W7842670 @default.
- W3120368727 hasRelatedWork W9035903 @default.
- W3120368727 isParatext "false" @default.
- W3120368727 isRetracted "false" @default.
- W3120368727 magId "3120368727" @default.
- W3120368727 workType "article" @default.