Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120374612> ?p ?o ?g. }
- W3120374612 endingPage "113" @default.
- W3120374612 startingPage "113" @default.
- W3120374612 abstract "The recent Coronavirus Disease 2019 (COVID-19) pandemic has put a tremendous burden on global health systems. Medical practitioners are under great pressure for reliable screening of suspected cases employing adjunct diagnostic tools to standard point-of-care testing methodology. Chest X-rays (CXRs) are appearing as a prospective diagnostic tool with easy-to-acquire, low-cost and less cross-contamination risk features. Artificial intelligence (AI)-attributed CXR evaluation has shown great potential for distinguishing COVID-19-induced pneumonia from other associated clinical instances. However, one of the associated challenges with diagnostic imaging-based modeling is incorrect feature attribution, which leads the model to learn misguiding disease patterns, causing wrong predictions. Here, we demonstrate an effective deep learning-based methodology to mitigate the problem, thereby allowing the classification algorithm to learn from relevant features. The proposed deep-learning framework consists of an ensemble of convolutional neural network (CNN) models focusing on both global and local pathological features from CXR lung images, while the latter is extracted using a multi-instance learning scheme and a local attention mechanism. An inspection of a series of backbone CNN models using global and local features, and an ensemble of both features, trained from high-quality CXR images of 1311 patients, further augmented for achieving the symmetry in class distribution, to localize lung pathological features followed by the classification of COVID-19 and other related pneumonia, shows that a DenseNet161 architecture outperforms all other models, as evaluated on an independent test set of 159 patients with confirmed cases. Specifically, an ensemble of DenseNet161 models with global and local attention-based features achieve an average balanced accuracy of 91.2%, average precision of 92.4%, and F1-score of 91.9% in a multi-label classification framework comprising COVID-19, pneumonia, and control classes. The DenseNet161 ensembles were also found to be statistically significant from all other models in a comprehensive statistical analysis. The current study demonstrated that the proposed deep learning-based algorithm can accurately identify the COVID-19-related pneumonia in CXR images, along with differentiating non-COVID-19-associated pneumonia with high specificity, by effectively alleviating the incorrect feature attribution problem, and exploiting an enhanced feature descriptor." @default.
- W3120374612 created "2021-01-18" @default.
- W3120374612 creator A5029934064 @default.
- W3120374612 creator A5042394003 @default.
- W3120374612 creator A5044856698 @default.
- W3120374612 creator A5062965682 @default.
- W3120374612 creator A5077540771 @default.
- W3120374612 date "2021-01-11" @default.
- W3120374612 modified "2023-09-30" @default.
- W3120374612 title "An Ensemble of Global and Local-Attention Based Convolutional Neural Networks for COVID-19 Diagnosis on Chest X-ray Images" @default.
- W3120374612 cites W2542459869 @default.
- W3120374612 cites W2912664121 @default.
- W3120374612 cites W3002715510 @default.
- W3120374612 cites W3005272159 @default.
- W3120374612 cites W3006110666 @default.
- W3120374612 cites W3006882119 @default.
- W3120374612 cites W3007497549 @default.
- W3120374612 cites W3007764760 @default.
- W3120374612 cites W3008985036 @default.
- W3120374612 cites W3010472505 @default.
- W3120374612 cites W3012843799 @default.
- W3120374612 cites W3013277995 @default.
- W3120374612 cites W3015292413 @default.
- W3120374612 cites W3015571324 @default.
- W3120374612 cites W3016448052 @default.
- W3120374612 cites W3017243633 @default.
- W3120374612 cites W3017317785 @default.
- W3120374612 cites W3019531985 @default.
- W3120374612 cites W3023402713 @default.
- W3120374612 cites W3023624960 @default.
- W3120374612 cites W3023750470 @default.
- W3120374612 cites W3031759249 @default.
- W3120374612 cites W3033616466 @default.
- W3120374612 cites W3036688711 @default.
- W3120374612 cites W3085109610 @default.
- W3120374612 cites W3085331204 @default.
- W3120374612 cites W3087000505 @default.
- W3120374612 cites W3087265446 @default.
- W3120374612 cites W3100523627 @default.
- W3120374612 cites W3105081694 @default.
- W3120374612 cites W3108981504 @default.
- W3120374612 cites W3118634064 @default.
- W3120374612 cites W4230649743 @default.
- W3120374612 cites W4301229630 @default.
- W3120374612 doi "https://doi.org/10.3390/sym13010113" @default.
- W3120374612 hasPublicationYear "2021" @default.
- W3120374612 type Work @default.
- W3120374612 sameAs 3120374612 @default.
- W3120374612 citedByCount "27" @default.
- W3120374612 countsByYear W31203746122021 @default.
- W3120374612 countsByYear W31203746122022 @default.
- W3120374612 countsByYear W31203746122023 @default.
- W3120374612 crossrefType "journal-article" @default.
- W3120374612 hasAuthorship W3120374612A5029934064 @default.
- W3120374612 hasAuthorship W3120374612A5042394003 @default.
- W3120374612 hasAuthorship W3120374612A5044856698 @default.
- W3120374612 hasAuthorship W3120374612A5062965682 @default.
- W3120374612 hasAuthorship W3120374612A5077540771 @default.
- W3120374612 hasBestOaLocation W31203746121 @default.
- W3120374612 hasConcept C108583219 @default.
- W3120374612 hasConcept C119857082 @default.
- W3120374612 hasConcept C119898033 @default.
- W3120374612 hasConcept C138885662 @default.
- W3120374612 hasConcept C153180895 @default.
- W3120374612 hasConcept C154945302 @default.
- W3120374612 hasConcept C169903167 @default.
- W3120374612 hasConcept C2776401178 @default.
- W3120374612 hasConcept C41008148 @default.
- W3120374612 hasConcept C41895202 @default.
- W3120374612 hasConcept C45942800 @default.
- W3120374612 hasConcept C81363708 @default.
- W3120374612 hasConceptScore W3120374612C108583219 @default.
- W3120374612 hasConceptScore W3120374612C119857082 @default.
- W3120374612 hasConceptScore W3120374612C119898033 @default.
- W3120374612 hasConceptScore W3120374612C138885662 @default.
- W3120374612 hasConceptScore W3120374612C153180895 @default.
- W3120374612 hasConceptScore W3120374612C154945302 @default.
- W3120374612 hasConceptScore W3120374612C169903167 @default.
- W3120374612 hasConceptScore W3120374612C2776401178 @default.
- W3120374612 hasConceptScore W3120374612C41008148 @default.
- W3120374612 hasConceptScore W3120374612C41895202 @default.
- W3120374612 hasConceptScore W3120374612C45942800 @default.
- W3120374612 hasConceptScore W3120374612C81363708 @default.
- W3120374612 hasIssue "1" @default.
- W3120374612 hasLocation W31203746121 @default.
- W3120374612 hasOpenAccess W3120374612 @default.
- W3120374612 hasPrimaryLocation W31203746121 @default.
- W3120374612 hasRelatedWork W2810053714 @default.
- W3120374612 hasRelatedWork W3099765033 @default.
- W3120374612 hasRelatedWork W3124943098 @default.
- W3120374612 hasRelatedWork W3136979370 @default.
- W3120374612 hasRelatedWork W3162132941 @default.
- W3120374612 hasRelatedWork W4285741730 @default.
- W3120374612 hasRelatedWork W4308112567 @default.
- W3120374612 hasRelatedWork W4318677156 @default.
- W3120374612 hasRelatedWork W4321369474 @default.
- W3120374612 hasRelatedWork W4382345315 @default.
- W3120374612 hasVolume "13" @default.