Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120409116> ?p ?o ?g. }
- W3120409116 endingPage "105146" @default.
- W3120409116 startingPage "105146" @default.
- W3120409116 abstract "Multiple factors contribute to occupational accidents including individual, job, environmental, organizational, and family issues. Most of them are latent factors and hard to model how and what extent they influence incidents occurrence. Although past research has included an occupational incident context, this attention has rarely provided a holistic instrument for the dynamic causal modeling of different influencing factors. Hence, the present study is aimed at developing a concrete instrument for identifying and modeling various influencing factors on occupational accident occurrence. After a comprehensive literature review and employing occupational safety and industrial psychological experts to achieve a reasonable conceptual model, the primary structure of the instrument was developed. Several systematic attempts were made to identify items (questions), define contributing factors, assess content and face validity, analyze its reliability, construct validity, criterion validity, and assess the model’s fitness using advanced statistics tests by SPSS.22 and LISREL9.3 programs. Finally, dynamic hybrid Bayesian Network (DHBN) based on the Confirmatory Factor Analysis (CFA) technique was developed to model accident occurrence and simulate the behavior of the main influencing factors over ten years under uncertainty. After standardization of the proposed instrument, a comprehensive study was conducted via the participation of 700 workers from thirty-eight manufacturing companies to illustrate its effectiveness and modeling capability. The findings revealed the effectiveness of the proposed instrument in the causation modeling of occupational incidents, dynamic modeling of contributing factors, and risk-based decision making for occupational incidents management. The proposed instrument can serve as a holistic tool for accurately identifying and dynamic modeling of different latent influencing factors, and making tailored safety decisions in different workplace context." @default.
- W3120409116 created "2021-01-18" @default.
- W3120409116 creator A5006264748 @default.
- W3120409116 creator A5029892736 @default.
- W3120409116 creator A5050788430 @default.
- W3120409116 creator A5051321851 @default.
- W3120409116 creator A5057907060 @default.
- W3120409116 date "2021-04-01" @default.
- W3120409116 modified "2023-10-16" @default.
- W3120409116 title "Dynamic occupational accidents modeling using dynamic hybrid Bayesian confirmatory factor analysis: An in-depth psychometrics study" @default.
- W3120409116 cites W1482581413 @default.
- W3120409116 cites W1542766966 @default.
- W3120409116 cites W172579286 @default.
- W3120409116 cites W1971180591 @default.
- W3120409116 cites W1976748961 @default.
- W3120409116 cites W1985988688 @default.
- W3120409116 cites W1986168246 @default.
- W3120409116 cites W1987699960 @default.
- W3120409116 cites W1995648754 @default.
- W3120409116 cites W1998135422 @default.
- W3120409116 cites W2003804773 @default.
- W3120409116 cites W2005732957 @default.
- W3120409116 cites W2005908852 @default.
- W3120409116 cites W2016437742 @default.
- W3120409116 cites W2017724814 @default.
- W3120409116 cites W2019678223 @default.
- W3120409116 cites W2024883783 @default.
- W3120409116 cites W2027293547 @default.
- W3120409116 cites W2029363279 @default.
- W3120409116 cites W2035226845 @default.
- W3120409116 cites W2048857528 @default.
- W3120409116 cites W2056974366 @default.
- W3120409116 cites W2062904197 @default.
- W3120409116 cites W2066680434 @default.
- W3120409116 cites W2069958140 @default.
- W3120409116 cites W2071286744 @default.
- W3120409116 cites W2071997916 @default.
- W3120409116 cites W2072123845 @default.
- W3120409116 cites W2086522141 @default.
- W3120409116 cites W2087457304 @default.
- W3120409116 cites W2091423302 @default.
- W3120409116 cites W2092157603 @default.
- W3120409116 cites W2092378116 @default.
- W3120409116 cites W2097957893 @default.
- W3120409116 cites W2099120714 @default.
- W3120409116 cites W2102322860 @default.
- W3120409116 cites W2106086255 @default.
- W3120409116 cites W2109919858 @default.
- W3120409116 cites W2111942718 @default.
- W3120409116 cites W2113169714 @default.
- W3120409116 cites W2114880390 @default.
- W3120409116 cites W2115189615 @default.
- W3120409116 cites W2125704911 @default.
- W3120409116 cites W2133848823 @default.
- W3120409116 cites W2138027042 @default.
- W3120409116 cites W2159669299 @default.
- W3120409116 cites W2160305503 @default.
- W3120409116 cites W2170567128 @default.
- W3120409116 cites W2209547591 @default.
- W3120409116 cites W2222723086 @default.
- W3120409116 cites W2418727227 @default.
- W3120409116 cites W2533759871 @default.
- W3120409116 cites W2604465385 @default.
- W3120409116 cites W2727871272 @default.
- W3120409116 cites W2736793538 @default.
- W3120409116 cites W2765802298 @default.
- W3120409116 cites W2777191153 @default.
- W3120409116 cites W2792294252 @default.
- W3120409116 cites W2792637414 @default.
- W3120409116 cites W2792770272 @default.
- W3120409116 cites W2805639941 @default.
- W3120409116 cites W2887658342 @default.
- W3120409116 cites W2900055074 @default.
- W3120409116 cites W2914003463 @default.
- W3120409116 cites W2946757541 @default.
- W3120409116 cites W3126055879 @default.
- W3120409116 doi "https://doi.org/10.1016/j.ssci.2020.105146" @default.
- W3120409116 hasPublicationYear "2021" @default.
- W3120409116 type Work @default.
- W3120409116 sameAs 3120409116 @default.
- W3120409116 citedByCount "9" @default.
- W3120409116 countsByYear W31204091162021 @default.
- W3120409116 countsByYear W31204091162022 @default.
- W3120409116 countsByYear W31204091162023 @default.
- W3120409116 crossrefType "journal-article" @default.
- W3120409116 hasAuthorship W3120409116A5006264748 @default.
- W3120409116 hasAuthorship W3120409116A5029892736 @default.
- W3120409116 hasAuthorship W3120409116A5050788430 @default.
- W3120409116 hasAuthorship W3120409116A5051321851 @default.
- W3120409116 hasAuthorship W3120409116A5057907060 @default.
- W3120409116 hasConcept C112930515 @default.
- W3120409116 hasConcept C119857082 @default.
- W3120409116 hasConcept C121332964 @default.
- W3120409116 hasConcept C127413603 @default.
- W3120409116 hasConcept C151730666 @default.
- W3120409116 hasConcept C15744967 @default.
- W3120409116 hasConcept C163258240 @default.
- W3120409116 hasConcept C166735990 @default.