Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120409146> ?p ?o ?g. }
- W3120409146 endingPage "100899" @default.
- W3120409146 startingPage "100899" @default.
- W3120409146 abstract "Lipids are essential for cellular functioning considering their role in membrane composition, signaling, and energy metabolism. The brain is the second most abundant organ in terms of lipid concentration and diversity only after adipose tissue. However, in the central system (CNS) lipid dysregulation has been linked to the etiology, progression, and severity of neurodegenerative diseases such as Alzheimeŕs, Parkinson, and Multiple Sclerosis. Advances in the human genome and subsequent sequencing technologies allowed us the study of lipidomics as a promising approach to diagnosis and treatment of neurodegeneration. Lipidomics advances rapidly increased the amount and quality of data allowing the integration with other omic types as well as implementing novel bioinformatic and quantitative tools such as machine learning (ML). Integration of lipidomics data with ML, as a powerful quantitative predictive approach, led to improvements in diagnostic biomarker prediction, clinical data integration, network, and systems approaches for neural behavior, novel etiology markers for inflammation, and neurodegeneration progression and even Mass Spectrometry image analysis. In this sense, by exploiting lipidomics data with ML is possible to improve the identification of new biomarkers or unveil new molecular mechanisms associated with lipid impairment across neurodegeneration. In this review, we present the lipidomic neurobiology state-of-the-art highlighting its potential applications to study neurodegenerative conditions. Also, we present theoretical background, applications, and advances in the integration of lipidomics with ML. This review opens the door to new approaches in this rising field." @default.
- W3120409146 created "2021-01-18" @default.
- W3120409146 creator A5008594412 @default.
- W3120409146 creator A5018128761 @default.
- W3120409146 creator A5061562222 @default.
- W3120409146 creator A5066860370 @default.
- W3120409146 creator A5077605144 @default.
- W3120409146 date "2021-04-01" @default.
- W3120409146 modified "2023-10-15" @default.
- W3120409146 title "Brain lipidomics as a rising field in neurodegenerative contexts: Perspectives with Machine Learning approaches" @default.
- W3120409146 cites W1713183855 @default.
- W3120409146 cites W1897859562 @default.
- W3120409146 cites W1960974681 @default.
- W3120409146 cites W1964045660 @default.
- W3120409146 cites W1969869131 @default.
- W3120409146 cites W1972376712 @default.
- W3120409146 cites W1973932627 @default.
- W3120409146 cites W1981382753 @default.
- W3120409146 cites W1981443842 @default.
- W3120409146 cites W1981819567 @default.
- W3120409146 cites W1986527452 @default.
- W3120409146 cites W1987335374 @default.
- W3120409146 cites W1988453006 @default.
- W3120409146 cites W1993668532 @default.
- W3120409146 cites W2001836680 @default.
- W3120409146 cites W2003372992 @default.
- W3120409146 cites W2012259571 @default.
- W3120409146 cites W2012650310 @default.
- W3120409146 cites W2014599677 @default.
- W3120409146 cites W2030206220 @default.
- W3120409146 cites W2032231753 @default.
- W3120409146 cites W2032284940 @default.
- W3120409146 cites W2039352830 @default.
- W3120409146 cites W2050179299 @default.
- W3120409146 cites W2051344553 @default.
- W3120409146 cites W2052602536 @default.
- W3120409146 cites W2058101466 @default.
- W3120409146 cites W2069915874 @default.
- W3120409146 cites W2069928158 @default.
- W3120409146 cites W2076226743 @default.
- W3120409146 cites W2087968417 @default.
- W3120409146 cites W2090221075 @default.
- W3120409146 cites W2090545764 @default.
- W3120409146 cites W2091456465 @default.
- W3120409146 cites W2094485750 @default.
- W3120409146 cites W2099583363 @default.
- W3120409146 cites W2102736631 @default.
- W3120409146 cites W2116687544 @default.
- W3120409146 cites W2118289286 @default.
- W3120409146 cites W2125872855 @default.
- W3120409146 cites W2134539481 @default.
- W3120409146 cites W2140718540 @default.
- W3120409146 cites W2140802932 @default.
- W3120409146 cites W2145946501 @default.
- W3120409146 cites W2158226583 @default.
- W3120409146 cites W2164377447 @default.
- W3120409146 cites W2168568321 @default.
- W3120409146 cites W2176882881 @default.
- W3120409146 cites W2294836268 @default.
- W3120409146 cites W2338416429 @default.
- W3120409146 cites W2361659253 @default.
- W3120409146 cites W2493190060 @default.
- W3120409146 cites W2504691963 @default.
- W3120409146 cites W2522015218 @default.
- W3120409146 cites W2550922779 @default.
- W3120409146 cites W2554842798 @default.
- W3120409146 cites W2589881680 @default.
- W3120409146 cites W2600881751 @default.
- W3120409146 cites W2607574991 @default.
- W3120409146 cites W2614658587 @default.
- W3120409146 cites W2686471536 @default.
- W3120409146 cites W2734651019 @default.
- W3120409146 cites W2752927128 @default.
- W3120409146 cites W2765290339 @default.
- W3120409146 cites W2772999440 @default.
- W3120409146 cites W2781740238 @default.
- W3120409146 cites W2790643990 @default.
- W3120409146 cites W2802484579 @default.
- W3120409146 cites W2807331042 @default.
- W3120409146 cites W2807394456 @default.
- W3120409146 cites W2809073228 @default.
- W3120409146 cites W2809314625 @default.
- W3120409146 cites W2891661090 @default.
- W3120409146 cites W2895762064 @default.
- W3120409146 cites W2897537480 @default.
- W3120409146 cites W2903107073 @default.
- W3120409146 cites W2908417137 @default.
- W3120409146 cites W2913791986 @default.
- W3120409146 cites W2916685682 @default.
- W3120409146 cites W2926631246 @default.
- W3120409146 cites W2941215423 @default.
- W3120409146 cites W2942036234 @default.
- W3120409146 cites W2946373463 @default.
- W3120409146 cites W2948600471 @default.
- W3120409146 cites W2951456341 @default.
- W3120409146 cites W2965146728 @default.
- W3120409146 cites W2969446569 @default.
- W3120409146 cites W2976989336 @default.