Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120439897> ?p ?o ?g. }
- W3120439897 endingPage "41" @default.
- W3120439897 startingPage "23" @default.
- W3120439897 abstract "Abstract. Identification of unknown parameters on the basis of partial and noisy data is a challenging task, in particular in high dimensional and non-linear settings. Gaussian approximations to the problem, such as ensemble Kalman inversion, tend to be robust and computationally cheap and often produce astonishingly accurate estimations despite the simplifying underlying assumptions. Yet there is a lot of room for improvement, specifically regarding a correct approximation of a non-Gaussian posterior distribution. The tempered ensemble transform particle filter is an adaptive Sequential Monte Carlo (SMC) method, whereby resampling is based on optimal transport mapping. Unlike ensemble Kalman inversion, it does not require any assumptions regarding the posterior distribution and hence has shown to provide promising results for non-linear non-Gaussian inverse problems. However, the improved accuracy comes with the price of much higher computational complexity, and the method is not as robust as ensemble Kalman inversion in high dimensional problems. In this work, we add an entropy-inspired regularisation factor to the underlying optimal transport problem that allows the high computational cost to be considerably reduced via Sinkhorn iterations. Further, the robustness of the method is increased via an ensemble Kalman inversion proposal step before each update of the samples, which is also referred to as a hybrid approach. The promising performance of the introduced method is numerically verified by testing it on a steady-state single-phase Darcy flow model with two different permeability configurations. The results are compared to the output of ensemble Kalman inversion, and Markov chain Monte Carlo methods results are computed as a benchmark." @default.
- W3120439897 created "2021-01-18" @default.
- W3120439897 creator A5044404046 @default.
- W3120439897 creator A5049314725 @default.
- W3120439897 creator A5056028364 @default.
- W3120439897 date "2021-01-15" @default.
- W3120439897 modified "2023-10-16" @default.
- W3120439897 title "Fast hybrid tempered ensemble transform filter formulation for Bayesian elliptical problems via Sinkhorn approximation" @default.
- W3120439897 cites W1513873506 @default.
- W3120439897 cites W1581736319 @default.
- W3120439897 cites W1896953440 @default.
- W3120439897 cites W1983212629 @default.
- W3120439897 cites W1996672492 @default.
- W3120439897 cites W2008703230 @default.
- W3120439897 cites W2010354954 @default.
- W3120439897 cites W2018353504 @default.
- W3120439897 cites W2027195108 @default.
- W3120439897 cites W2050841740 @default.
- W3120439897 cites W2066601679 @default.
- W3120439897 cites W2076546887 @default.
- W3120439897 cites W2081182050 @default.
- W3120439897 cites W2102270443 @default.
- W3120439897 cites W2136037939 @default.
- W3120439897 cites W2147357149 @default.
- W3120439897 cites W2149498546 @default.
- W3120439897 cites W2152657433 @default.
- W3120439897 cites W2152869421 @default.
- W3120439897 cites W2312355711 @default.
- W3120439897 cites W2469805270 @default.
- W3120439897 cites W2539033431 @default.
- W3120439897 cites W2575742565 @default.
- W3120439897 cites W2592051047 @default.
- W3120439897 cites W2734410952 @default.
- W3120439897 cites W2749844585 @default.
- W3120439897 cites W2897923806 @default.
- W3120439897 cites W2963729846 @default.
- W3120439897 cites W2963741795 @default.
- W3120439897 cites W2963874162 @default.
- W3120439897 cites W2990558975 @default.
- W3120439897 cites W2999181081 @default.
- W3120439897 cites W3099114031 @default.
- W3120439897 cites W3099212336 @default.
- W3120439897 cites W3104341454 @default.
- W3120439897 cites W4206471589 @default.
- W3120439897 cites W4242259929 @default.
- W3120439897 cites W4254115559 @default.
- W3120439897 cites W4292691288 @default.
- W3120439897 doi "https://doi.org/10.5194/npg-28-23-2021" @default.
- W3120439897 hasPublicationYear "2021" @default.
- W3120439897 type Work @default.
- W3120439897 sameAs 3120439897 @default.
- W3120439897 citedByCount "1" @default.
- W3120439897 countsByYear W31204398972022 @default.
- W3120439897 crossrefType "journal-article" @default.
- W3120439897 hasAuthorship W3120439897A5044404046 @default.
- W3120439897 hasAuthorship W3120439897A5049314725 @default.
- W3120439897 hasAuthorship W3120439897A5056028364 @default.
- W3120439897 hasBestOaLocation W31204398971 @default.
- W3120439897 hasConcept C104317684 @default.
- W3120439897 hasConcept C105795698 @default.
- W3120439897 hasConcept C107673813 @default.
- W3120439897 hasConcept C109007969 @default.
- W3120439897 hasConcept C111350023 @default.
- W3120439897 hasConcept C11413529 @default.
- W3120439897 hasConcept C121332964 @default.
- W3120439897 hasConcept C126255220 @default.
- W3120439897 hasConcept C151730666 @default.
- W3120439897 hasConcept C154945302 @default.
- W3120439897 hasConcept C157286648 @default.
- W3120439897 hasConcept C163716315 @default.
- W3120439897 hasConcept C185592680 @default.
- W3120439897 hasConcept C1893757 @default.
- W3120439897 hasConcept C19499675 @default.
- W3120439897 hasConcept C206833254 @default.
- W3120439897 hasConcept C28826006 @default.
- W3120439897 hasConcept C33923547 @default.
- W3120439897 hasConcept C41008148 @default.
- W3120439897 hasConcept C52421305 @default.
- W3120439897 hasConcept C55493867 @default.
- W3120439897 hasConcept C57830394 @default.
- W3120439897 hasConcept C62520636 @default.
- W3120439897 hasConcept C63479239 @default.
- W3120439897 hasConcept C79334102 @default.
- W3120439897 hasConcept C86803240 @default.
- W3120439897 hasConceptScore W3120439897C104317684 @default.
- W3120439897 hasConceptScore W3120439897C105795698 @default.
- W3120439897 hasConceptScore W3120439897C107673813 @default.
- W3120439897 hasConceptScore W3120439897C109007969 @default.
- W3120439897 hasConceptScore W3120439897C111350023 @default.
- W3120439897 hasConceptScore W3120439897C11413529 @default.
- W3120439897 hasConceptScore W3120439897C121332964 @default.
- W3120439897 hasConceptScore W3120439897C126255220 @default.
- W3120439897 hasConceptScore W3120439897C151730666 @default.
- W3120439897 hasConceptScore W3120439897C154945302 @default.
- W3120439897 hasConceptScore W3120439897C157286648 @default.
- W3120439897 hasConceptScore W3120439897C163716315 @default.
- W3120439897 hasConceptScore W3120439897C185592680 @default.
- W3120439897 hasConceptScore W3120439897C1893757 @default.