Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120472021> ?p ?o ?g. }
- W3120472021 abstract "Recently, there is a vast interest in developing image feature learning methods that are independent of the training data, such as deep image prior [35], InGAN [28], [29], SinGAN [27], and DCIL [8]. These methods perform various tasks, such as image restoration, image editing, and image synthesis. In this work, we proposed a new training data-independent framework, called Deep Contextual Features Learning (DeepCFL), to perform image synthesis and image restoration based on the semantics of the input image. The contextual features are simply the high dimensional vectors representing the semantics of the given image. DeepCFL is a single image GAN framework that learns the distribution of the context vectors from the input image. We show the performance of contextual learning in various challenging scenarios: outpainting, inpainting, and restoration of randomly removed pixels. DeepCFL is applicable when the input source image and the generated target image are not aligned. We illustrate image synthesis using DeepCFL for the task of image resizing." @default.
- W3120472021 created "2021-01-18" @default.
- W3120472021 creator A5020425550 @default.
- W3120472021 creator A5070142969 @default.
- W3120472021 date "2021-01-01" @default.
- W3120472021 modified "2023-09-23" @default.
- W3120472021 title "DeepCFL: Deep Contextual Features Learning from a Single Image" @default.
- W3120472021 cites W1946953458 @default.
- W3120472021 cites W1978749115 @default.
- W3120472021 cites W2037642501 @default.
- W3120472021 cites W2056370875 @default.
- W3120472021 cites W2062811295 @default.
- W3120472021 cites W2115273023 @default.
- W3120472021 cites W2116013899 @default.
- W3120472021 cites W2153663612 @default.
- W3120472021 cites W2160547390 @default.
- W3120472021 cites W2172275395 @default.
- W3120472021 cites W2475287302 @default.
- W3120472021 cites W2505029951 @default.
- W3120472021 cites W2534320940 @default.
- W3120472021 cites W2557414982 @default.
- W3120472021 cites W2593414223 @default.
- W3120472021 cites W2613155248 @default.
- W3120472021 cites W2751646824 @default.
- W3120472021 cites W2948627722 @default.
- W3120472021 cites W2963470893 @default.
- W3120472021 cites W2963704386 @default.
- W3120472021 cites W2963800363 @default.
- W3120472021 cites W2964309429 @default.
- W3120472021 cites W2969109746 @default.
- W3120472021 cites W2981682056 @default.
- W3120472021 cites W2982041717 @default.
- W3120472021 cites W2982763192 @default.
- W3120472021 cites W2987614525 @default.
- W3120472021 cites W3008062244 @default.
- W3120472021 cites W3009299090 @default.
- W3120472021 cites W3043547428 @default.
- W3120472021 cites W3137241515 @default.
- W3120472021 doi "https://doi.org/10.1109/wacv48630.2021.00294" @default.
- W3120472021 hasPublicationYear "2021" @default.
- W3120472021 type Work @default.
- W3120472021 sameAs 3120472021 @default.
- W3120472021 citedByCount "3" @default.
- W3120472021 countsByYear W31204720212022 @default.
- W3120472021 countsByYear W31204720212023 @default.
- W3120472021 crossrefType "proceedings-article" @default.
- W3120472021 hasAuthorship W3120472021A5020425550 @default.
- W3120472021 hasAuthorship W3120472021A5070142969 @default.
- W3120472021 hasBestOaLocation W31204720212 @default.
- W3120472021 hasConcept C106430172 @default.
- W3120472021 hasConcept C108583219 @default.
- W3120472021 hasConcept C115961682 @default.
- W3120472021 hasConcept C11727466 @default.
- W3120472021 hasConcept C126422989 @default.
- W3120472021 hasConcept C138885662 @default.
- W3120472021 hasConcept C151730666 @default.
- W3120472021 hasConcept C153180895 @default.
- W3120472021 hasConcept C154945302 @default.
- W3120472021 hasConcept C160633673 @default.
- W3120472021 hasConcept C184337299 @default.
- W3120472021 hasConcept C199360897 @default.
- W3120472021 hasConcept C199579030 @default.
- W3120472021 hasConcept C2776401178 @default.
- W3120472021 hasConcept C2776674983 @default.
- W3120472021 hasConcept C2779343474 @default.
- W3120472021 hasConcept C31972630 @default.
- W3120472021 hasConcept C41008148 @default.
- W3120472021 hasConcept C41895202 @default.
- W3120472021 hasConcept C86803240 @default.
- W3120472021 hasConcept C9417928 @default.
- W3120472021 hasConceptScore W3120472021C106430172 @default.
- W3120472021 hasConceptScore W3120472021C108583219 @default.
- W3120472021 hasConceptScore W3120472021C115961682 @default.
- W3120472021 hasConceptScore W3120472021C11727466 @default.
- W3120472021 hasConceptScore W3120472021C126422989 @default.
- W3120472021 hasConceptScore W3120472021C138885662 @default.
- W3120472021 hasConceptScore W3120472021C151730666 @default.
- W3120472021 hasConceptScore W3120472021C153180895 @default.
- W3120472021 hasConceptScore W3120472021C154945302 @default.
- W3120472021 hasConceptScore W3120472021C160633673 @default.
- W3120472021 hasConceptScore W3120472021C184337299 @default.
- W3120472021 hasConceptScore W3120472021C199360897 @default.
- W3120472021 hasConceptScore W3120472021C199579030 @default.
- W3120472021 hasConceptScore W3120472021C2776401178 @default.
- W3120472021 hasConceptScore W3120472021C2776674983 @default.
- W3120472021 hasConceptScore W3120472021C2779343474 @default.
- W3120472021 hasConceptScore W3120472021C31972630 @default.
- W3120472021 hasConceptScore W3120472021C41008148 @default.
- W3120472021 hasConceptScore W3120472021C41895202 @default.
- W3120472021 hasConceptScore W3120472021C86803240 @default.
- W3120472021 hasConceptScore W3120472021C9417928 @default.
- W3120472021 hasLocation W31204720211 @default.
- W3120472021 hasLocation W31204720212 @default.
- W3120472021 hasOpenAccess W3120472021 @default.
- W3120472021 hasPrimaryLocation W31204720211 @default.
- W3120472021 hasRelatedWork W136095096 @default.
- W3120472021 hasRelatedWork W1971303903 @default.
- W3120472021 hasRelatedWork W2178354530 @default.
- W3120472021 hasRelatedWork W2370766994 @default.
- W3120472021 hasRelatedWork W2794492057 @default.