Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120490405> ?p ?o ?g. }
- W3120490405 abstract "Within the framework of the high-order finite volume (FV) method, a high-order gas kinetic flux solver (GKFS) is developed in this work for simulation of two-dimensional incompressible flows. Generally, in the conventional high-order FV method, the inviscid and viscous fluxes are treated separately. However, different from the conventional high-order FV method, the high-order GKFS evaluates the inviscid and viscous fluxes simultaneously from the local asymptotic solution to the Boltzmann equation, which consists of the equilibrium distribution function and its substantial derivative at the cell interface. By introducing a difference scheme with the high-order accuracy in space to discretize the substantial derivative, a high-order accurate local asymptotic solution to the Boltzmann equation can be obtained. The numerical flux of the Navier–Stokes equations can then be calculated by the moments of the local asymptotic solution. Since this local asymptotic solution is relatively simple, the numerical fluxes of the Navier–Stokes equations can be given explicitly for the high-order GKFS, which is the function of the left and the right states and their first-order derivatives. Numerical results showed that the developed solver can achieve the desired accuracy on both the quadrilateral mesh and the triangular mesh and its efficiency is higher than the second-order counterpart when achieving comparable accuracy of solution." @default.
- W3120490405 created "2021-01-18" @default.
- W3120490405 creator A5007405390 @default.
- W3120490405 creator A5008260778 @default.
- W3120490405 creator A5010009547 @default.
- W3120490405 creator A5018866860 @default.
- W3120490405 creator A5024672196 @default.
- W3120490405 creator A5032674186 @default.
- W3120490405 date "2021-01-01" @default.
- W3120490405 modified "2023-09-28" @default.
- W3120490405 title "High-order gas kinetic flux solver for simulation of two dimensional incompressible flows" @default.
- W3120490405 cites W1109740529 @default.
- W3120490405 cites W1448383990 @default.
- W3120490405 cites W1970565320 @default.
- W3120490405 cites W1972878012 @default.
- W3120490405 cites W1994362549 @default.
- W3120490405 cites W1999200264 @default.
- W3120490405 cites W2009161457 @default.
- W3120490405 cites W2010875717 @default.
- W3120490405 cites W2012798852 @default.
- W3120490405 cites W2017700359 @default.
- W3120490405 cites W2020679137 @default.
- W3120490405 cites W2021041911 @default.
- W3120490405 cites W2036466005 @default.
- W3120490405 cites W2039115741 @default.
- W3120490405 cites W2039544556 @default.
- W3120490405 cites W2048890986 @default.
- W3120490405 cites W2056102901 @default.
- W3120490405 cites W2070606139 @default.
- W3120490405 cites W2075367923 @default.
- W3120490405 cites W2079263908 @default.
- W3120490405 cites W2079968736 @default.
- W3120490405 cites W2081467066 @default.
- W3120490405 cites W2083367386 @default.
- W3120490405 cites W2088385269 @default.
- W3120490405 cites W2088802448 @default.
- W3120490405 cites W2105228215 @default.
- W3120490405 cites W2111943775 @default.
- W3120490405 cites W2117242079 @default.
- W3120490405 cites W2133758418 @default.
- W3120490405 cites W2135183195 @default.
- W3120490405 cites W2150215260 @default.
- W3120490405 cites W2151652088 @default.
- W3120490405 cites W2165804517 @default.
- W3120490405 cites W2265668744 @default.
- W3120490405 cites W2305446434 @default.
- W3120490405 cites W2321500696 @default.
- W3120490405 cites W2464745838 @default.
- W3120490405 cites W2499875932 @default.
- W3120490405 cites W2531614494 @default.
- W3120490405 cites W2586619951 @default.
- W3120490405 cites W2589527379 @default.
- W3120490405 cites W2594516865 @default.
- W3120490405 cites W2613418343 @default.
- W3120490405 cites W2614749877 @default.
- W3120490405 cites W2742095086 @default.
- W3120490405 cites W2771240522 @default.
- W3120490405 cites W2904720847 @default.
- W3120490405 cites W2913518414 @default.
- W3120490405 cites W2945161348 @default.
- W3120490405 cites W2953487454 @default.
- W3120490405 cites W2968137543 @default.
- W3120490405 cites W2981290435 @default.
- W3120490405 cites W2981581141 @default.
- W3120490405 cites W2985774805 @default.
- W3120490405 cites W3004400400 @default.
- W3120490405 cites W3010292040 @default.
- W3120490405 cites W3015435223 @default.
- W3120490405 cites W3037054363 @default.
- W3120490405 cites W3039558315 @default.
- W3120490405 cites W3043760812 @default.
- W3120490405 cites W339403131 @default.
- W3120490405 cites W4233293283 @default.
- W3120490405 cites W4253328047 @default.
- W3120490405 cites W788219098 @default.
- W3120490405 doi "https://doi.org/10.1063/5.0032488" @default.
- W3120490405 hasPublicationYear "2021" @default.
- W3120490405 type Work @default.
- W3120490405 sameAs 3120490405 @default.
- W3120490405 citedByCount "8" @default.
- W3120490405 countsByYear W31204904052021 @default.
- W3120490405 countsByYear W31204904052022 @default.
- W3120490405 countsByYear W31204904052023 @default.
- W3120490405 crossrefType "journal-article" @default.
- W3120490405 hasAuthorship W3120490405A5007405390 @default.
- W3120490405 hasAuthorship W3120490405A5008260778 @default.
- W3120490405 hasAuthorship W3120490405A5010009547 @default.
- W3120490405 hasAuthorship W3120490405A5018866860 @default.
- W3120490405 hasAuthorship W3120490405A5024672196 @default.
- W3120490405 hasAuthorship W3120490405A5032674186 @default.
- W3120490405 hasBestOaLocation W31204904052 @default.
- W3120490405 hasConcept C121332964 @default.
- W3120490405 hasConcept C126255220 @default.
- W3120490405 hasConcept C134306372 @default.
- W3120490405 hasConcept C135628077 @default.
- W3120490405 hasConcept C151756577 @default.
- W3120490405 hasConcept C165995430 @default.
- W3120490405 hasConcept C2778770139 @default.
- W3120490405 hasConcept C2781278361 @default.
- W3120490405 hasConcept C28826006 @default.