Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120502783> ?p ?o ?g. }
- W3120502783 endingPage "101110" @default.
- W3120502783 startingPage "101110" @default.
- W3120502783 abstract "Earthquake prediction is currently the most crucial task required for the probability, hazard, risk mapping, and mitigation purposes. Earthquake prediction attracts the researchers' attention from both academia and industries. Traditionally, the risk assessment approaches have used various traditional and machine learning models. However, deep learning techniques have been rarely tested for earthquake probability mapping. Therefore, this study develops a convolutional neural network (CNN) model for earthquake probability assessment in NE India. Then conducts vulnerability using analytical hierarchy process (AHP), Venn's intersection theory for hazard, and integrated model for risk mapping. A prediction of classification task was performed in which the model predicts magnitudes more than 4 Mw that considers nine indicators. Prediction classification results and intensity variation were then used for probability and hazard mapping, respectively. Finally, earthquake risk map was produced by multiplying hazard, vulnerability, and coping capacity. The vulnerability was prepared by using six vulnerable factors, and the coping capacity was estimated by using the number of hospitals and associated variables, including budget available for disaster management. The CNN model for a probability distribution is a robust technique that provides good accuracy. Results show that CNN is superior to the other algorithms, which completed the classification prediction task with an accuracy of 0.94, precision of 0.98, recall of 0.85, and F1 score of 0.91. These indicators were used for probability mapping, and the total area of hazard (21,412.94 km2), vulnerability (480.98 km2), and risk (34,586.10 km2) was estimated." @default.
- W3120502783 created "2021-01-18" @default.
- W3120502783 creator A5024521592 @default.
- W3120502783 creator A5029739578 @default.
- W3120502783 creator A5059040421 @default.
- W3120502783 creator A5091457224 @default.
- W3120502783 date "2021-05-01" @default.
- W3120502783 modified "2023-10-14" @default.
- W3120502783 title "Earthquake risk assessment in NE India using deep learning and geospatial analysis" @default.
- W3120502783 cites W1964584899 @default.
- W3120502783 cites W1966471883 @default.
- W3120502783 cites W1969830066 @default.
- W3120502783 cites W1971024732 @default.
- W3120502783 cites W1971986260 @default.
- W3120502783 cites W1979637728 @default.
- W3120502783 cites W1983676031 @default.
- W3120502783 cites W1985532303 @default.
- W3120502783 cites W1989156417 @default.
- W3120502783 cites W1990113089 @default.
- W3120502783 cites W1992649778 @default.
- W3120502783 cites W1998117479 @default.
- W3120502783 cites W1998652378 @default.
- W3120502783 cites W2002011470 @default.
- W3120502783 cites W2003756933 @default.
- W3120502783 cites W2005889207 @default.
- W3120502783 cites W2027291508 @default.
- W3120502783 cites W2041765828 @default.
- W3120502783 cites W2054977656 @default.
- W3120502783 cites W2058013009 @default.
- W3120502783 cites W2061343154 @default.
- W3120502783 cites W2068386683 @default.
- W3120502783 cites W2072749937 @default.
- W3120502783 cites W2076931346 @default.
- W3120502783 cites W2083372331 @default.
- W3120502783 cites W2084414514 @default.
- W3120502783 cites W2085958036 @default.
- W3120502783 cites W2090042335 @default.
- W3120502783 cites W2096154525 @default.
- W3120502783 cites W2099596680 @default.
- W3120502783 cites W2110010245 @default.
- W3120502783 cites W2110089143 @default.
- W3120502783 cites W2111555634 @default.
- W3120502783 cites W2112661518 @default.
- W3120502783 cites W2118061978 @default.
- W3120502783 cites W2124006204 @default.
- W3120502783 cites W2159102695 @default.
- W3120502783 cites W2235869122 @default.
- W3120502783 cites W2255632802 @default.
- W3120502783 cites W2326322401 @default.
- W3120502783 cites W2326643044 @default.
- W3120502783 cites W2329350178 @default.
- W3120502783 cites W2474079021 @default.
- W3120502783 cites W2530563849 @default.
- W3120502783 cites W2567486812 @default.
- W3120502783 cites W2731448890 @default.
- W3120502783 cites W2770456481 @default.
- W3120502783 cites W2797596493 @default.
- W3120502783 cites W2801821259 @default.
- W3120502783 cites W2809409513 @default.
- W3120502783 cites W2922122879 @default.
- W3120502783 cites W2948744873 @default.
- W3120502783 cites W2962207954 @default.
- W3120502783 cites W2963351669 @default.
- W3120502783 cites W2971094449 @default.
- W3120502783 cites W2995168928 @default.
- W3120502783 cites W2995502771 @default.
- W3120502783 cites W2995525027 @default.
- W3120502783 cites W3001758897 @default.
- W3120502783 cites W3040291884 @default.
- W3120502783 cites W3040332201 @default.
- W3120502783 cites W3041064370 @default.
- W3120502783 cites W3041919862 @default.
- W3120502783 cites W3047123879 @default.
- W3120502783 cites W3047419688 @default.
- W3120502783 doi "https://doi.org/10.1016/j.gsf.2020.11.007" @default.
- W3120502783 hasPublicationYear "2021" @default.
- W3120502783 type Work @default.
- W3120502783 sameAs 3120502783 @default.
- W3120502783 citedByCount "28" @default.
- W3120502783 countsByYear W31205027832021 @default.
- W3120502783 countsByYear W31205027832022 @default.
- W3120502783 countsByYear W31205027832023 @default.
- W3120502783 crossrefType "journal-article" @default.
- W3120502783 hasAuthorship W3120502783A5024521592 @default.
- W3120502783 hasAuthorship W3120502783A5029739578 @default.
- W3120502783 hasAuthorship W3120502783A5059040421 @default.
- W3120502783 hasAuthorship W3120502783A5091457224 @default.
- W3120502783 hasBestOaLocation W31205027831 @default.
- W3120502783 hasConcept C119857082 @default.
- W3120502783 hasConcept C12174686 @default.
- W3120502783 hasConcept C124101348 @default.
- W3120502783 hasConcept C127413603 @default.
- W3120502783 hasConcept C154945302 @default.
- W3120502783 hasConcept C162324750 @default.
- W3120502783 hasConcept C178790620 @default.
- W3120502783 hasConcept C185592680 @default.
- W3120502783 hasConcept C187736073 @default.
- W3120502783 hasConcept C205649164 @default.