Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120505220> ?p ?o ?g. }
- W3120505220 endingPage "224" @default.
- W3120505220 startingPage "216" @default.
- W3120505220 abstract "We outline recent developments in artificial intelligence (AI) and machine learning (ML) techniques for integrative structural biology of intrinsically disordered proteins (IDP) ensembles. IDPs challenge the traditional protein structure-function paradigm by adapting their conformations in response to specific binding partners leading them to mediate diverse, and often complex cellular functions such as biological signaling, self-organization and compartmentalization. Obtaining mechanistic insights into their function can therefore be challenging for traditional structural determination techniques. Often, scientists have to rely on piecemeal evidence drawn from diverse experimental techniques to characterize their functional mechanisms. Multiscale simulations can help bridge critical knowledge gaps about IDP structure-function relationships-however, these techniques also face challenges in resolving emergent phenomena within IDP conformational ensembles. We posit that scalable statistical inference techniques can effectively integrate information gleaned from multiple experimental techniques as well as from simulations, thus providing access to atomistic details of these emergent phenomena." @default.
- W3120505220 created "2021-01-18" @default.
- W3120505220 creator A5028188095 @default.
- W3120505220 creator A5033215252 @default.
- W3120505220 creator A5046440469 @default.
- W3120505220 creator A5054452935 @default.
- W3120505220 date "2021-02-01" @default.
- W3120505220 modified "2023-09-27" @default.
- W3120505220 title "Artificial intelligence techniques for integrative structural biology of intrinsically disordered proteins" @default.
- W3120505220 cites W2118076674 @default.
- W3120505220 cites W2167693135 @default.
- W3120505220 cites W2551738557 @default.
- W3120505220 cites W2768480811 @default.
- W3120505220 cites W2799987814 @default.
- W3120505220 cites W2801628171 @default.
- W3120505220 cites W2883596424 @default.
- W3120505220 cites W2891228925 @default.
- W3120505220 cites W2893323080 @default.
- W3120505220 cites W2902735580 @default.
- W3120505220 cites W2904535843 @default.
- W3120505220 cites W2909211272 @default.
- W3120505220 cites W2912126500 @default.
- W3120505220 cites W2915159619 @default.
- W3120505220 cites W2917749467 @default.
- W3120505220 cites W2919115771 @default.
- W3120505220 cites W2924564326 @default.
- W3120505220 cites W2937303242 @default.
- W3120505220 cites W2942327095 @default.
- W3120505220 cites W2947359287 @default.
- W3120505220 cites W2953016572 @default.
- W3120505220 cites W2953302413 @default.
- W3120505220 cites W2955360866 @default.
- W3120505220 cites W2958122143 @default.
- W3120505220 cites W2962660969 @default.
- W3120505220 cites W2963346670 @default.
- W3120505220 cites W2963383782 @default.
- W3120505220 cites W2968909424 @default.
- W3120505220 cites W2969072345 @default.
- W3120505220 cites W2974593196 @default.
- W3120505220 cites W2981013945 @default.
- W3120505220 cites W2981059220 @default.
- W3120505220 cites W2982135975 @default.
- W3120505220 cites W2988772100 @default.
- W3120505220 cites W2992155957 @default.
- W3120505220 cites W2997905860 @default.
- W3120505220 cites W2998146374 @default.
- W3120505220 cites W2998620327 @default.
- W3120505220 cites W3007707119 @default.
- W3120505220 cites W3007953280 @default.
- W3120505220 cites W3008137892 @default.
- W3120505220 cites W3008591352 @default.
- W3120505220 cites W3008920080 @default.
- W3120505220 cites W3011163557 @default.
- W3120505220 cites W3018137979 @default.
- W3120505220 cites W3031661900 @default.
- W3120505220 cites W3035297404 @default.
- W3120505220 cites W3035402358 @default.
- W3120505220 cites W3080087483 @default.
- W3120505220 cites W3080337324 @default.
- W3120505220 cites W3099423575 @default.
- W3120505220 cites W3103390675 @default.
- W3120505220 doi "https://doi.org/10.1016/j.sbi.2020.12.001" @default.
- W3120505220 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33421906" @default.
- W3120505220 hasPublicationYear "2021" @default.
- W3120505220 type Work @default.
- W3120505220 sameAs 3120505220 @default.
- W3120505220 citedByCount "26" @default.
- W3120505220 countsByYear W31205052202021 @default.
- W3120505220 countsByYear W31205052202022 @default.
- W3120505220 countsByYear W31205052202023 @default.
- W3120505220 crossrefType "journal-article" @default.
- W3120505220 hasAuthorship W3120505220A5028188095 @default.
- W3120505220 hasAuthorship W3120505220A5033215252 @default.
- W3120505220 hasAuthorship W3120505220A5046440469 @default.
- W3120505220 hasAuthorship W3120505220A5054452935 @default.
- W3120505220 hasBestOaLocation W31205052201 @default.
- W3120505220 hasConcept C104317684 @default.
- W3120505220 hasConcept C110455231 @default.
- W3120505220 hasConcept C12554922 @default.
- W3120505220 hasConcept C14036430 @default.
- W3120505220 hasConcept C154945302 @default.
- W3120505220 hasConcept C15744967 @default.
- W3120505220 hasConcept C181199279 @default.
- W3120505220 hasConcept C188147891 @default.
- W3120505220 hasConcept C2776214188 @default.
- W3120505220 hasConcept C2778815515 @default.
- W3120505220 hasConcept C2986374874 @default.
- W3120505220 hasConcept C41008148 @default.
- W3120505220 hasConcept C55493867 @default.
- W3120505220 hasConcept C70721500 @default.
- W3120505220 hasConcept C78458016 @default.
- W3120505220 hasConcept C86803240 @default.
- W3120505220 hasConceptScore W3120505220C104317684 @default.
- W3120505220 hasConceptScore W3120505220C110455231 @default.
- W3120505220 hasConceptScore W3120505220C12554922 @default.
- W3120505220 hasConceptScore W3120505220C14036430 @default.
- W3120505220 hasConceptScore W3120505220C154945302 @default.
- W3120505220 hasConceptScore W3120505220C15744967 @default.