Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120529348> ?p ?o ?g. }
- W3120529348 endingPage "36" @default.
- W3120529348 startingPage "17" @default.
- W3120529348 abstract "Earthquakes prediction is considered the holy grail of seismology. After almost a century of efforts without convincing results, the recent raise of machine learning (ML) methods in conjunction with the deployment of dense seismic networks has boosted new hope in this field. Even if large earthquakes still occur unanticipated, recent laboratory, field, and theoretical studies support the existence of a preparatory phase preceding earthquakes, where small and stable ruptures progressively develop into an unstable and confined zone around the future hypocenter. The problem of recognizing the preparatory phase of earthquakes is of critical importance for mitigating seismic risk for both natural and induced events. Here, we focus on the induced seismicity at The Geysers geothermal field in California. We address the preparatory phase of M~4 earthquakes identification problem by developing a ML approach based on features computed from catalogues, which are used to train a recurrent neural network (RNN). We show that RNN successfully reveal the preparation of M~4 earthquakes. These results confirm the potential of monitoring induced microseismicity and should encourage new research also in predictability of natural earthquakes." @default.
- W3120529348 created "2021-01-18" @default.
- W3120529348 creator A5028837962 @default.
- W3120529348 creator A5058826327 @default.
- W3120529348 date "2021-01-04" @default.
- W3120529348 modified "2023-10-11" @default.
- W3120529348 title "Forecasting the Preparatory Phase of Induced Earthquakes by Recurrent Neural Network" @default.
- W3120529348 cites W1498436455 @default.
- W3120529348 cites W1547884832 @default.
- W3120529348 cites W1674184586 @default.
- W3120529348 cites W1836001408 @default.
- W3120529348 cites W1891030064 @default.
- W3120529348 cites W1915783104 @default.
- W3120529348 cites W1966447062 @default.
- W3120529348 cites W1971201784 @default.
- W3120529348 cites W1972259797 @default.
- W3120529348 cites W1986987267 @default.
- W3120529348 cites W1987412120 @default.
- W3120529348 cites W1990675238 @default.
- W3120529348 cites W1993912260 @default.
- W3120529348 cites W2008792633 @default.
- W3120529348 cites W2011590140 @default.
- W3120529348 cites W2013185482 @default.
- W3120529348 cites W2030628451 @default.
- W3120529348 cites W2033998922 @default.
- W3120529348 cites W2034079800 @default.
- W3120529348 cites W2046413941 @default.
- W3120529348 cites W2058951418 @default.
- W3120529348 cites W2064675550 @default.
- W3120529348 cites W2069143585 @default.
- W3120529348 cites W2081688868 @default.
- W3120529348 cites W2090503999 @default.
- W3120529348 cites W2092832730 @default.
- W3120529348 cites W2104292910 @default.
- W3120529348 cites W2105658614 @default.
- W3120529348 cites W2106311489 @default.
- W3120529348 cites W2109553965 @default.
- W3120529348 cites W2113642172 @default.
- W3120529348 cites W2117897510 @default.
- W3120529348 cites W2122946158 @default.
- W3120529348 cites W2124730627 @default.
- W3120529348 cites W2124977001 @default.
- W3120529348 cites W2133411430 @default.
- W3120529348 cites W2147887061 @default.
- W3120529348 cites W2148407447 @default.
- W3120529348 cites W2153090349 @default.
- W3120529348 cites W2157331557 @default.
- W3120529348 cites W2161347920 @default.
- W3120529348 cites W2161576056 @default.
- W3120529348 cites W2162255628 @default.
- W3120529348 cites W2168006632 @default.
- W3120529348 cites W2340385395 @default.
- W3120529348 cites W2602984744 @default.
- W3120529348 cites W2613803517 @default.
- W3120529348 cites W2743301287 @default.
- W3120529348 cites W2752368085 @default.
- W3120529348 cites W2763603592 @default.
- W3120529348 cites W2793951711 @default.
- W3120529348 cites W2806107957 @default.
- W3120529348 cites W2888770834 @default.
- W3120529348 cites W2898603558 @default.
- W3120529348 cites W2911029975 @default.
- W3120529348 cites W2935862809 @default.
- W3120529348 cites W2951134650 @default.
- W3120529348 cites W2964590879 @default.
- W3120529348 cites W2979681142 @default.
- W3120529348 cites W2989999737 @default.
- W3120529348 cites W2993383518 @default.
- W3120529348 cites W2999309192 @default.
- W3120529348 cites W3026667335 @default.
- W3120529348 cites W3089231496 @default.
- W3120529348 cites W3096350652 @default.
- W3120529348 cites W3102606037 @default.
- W3120529348 cites W3124928229 @default.
- W3120529348 cites W4231485169 @default.
- W3120529348 cites W4255983806 @default.
- W3120529348 doi "https://doi.org/10.3390/forecast3010002" @default.
- W3120529348 hasPublicationYear "2021" @default.
- W3120529348 type Work @default.
- W3120529348 sameAs 3120529348 @default.
- W3120529348 citedByCount "9" @default.
- W3120529348 countsByYear W31205293482021 @default.
- W3120529348 countsByYear W31205293482022 @default.
- W3120529348 countsByYear W31205293482023 @default.
- W3120529348 crossrefType "journal-article" @default.
- W3120529348 hasAuthorship W3120529348A5028837962 @default.
- W3120529348 hasAuthorship W3120529348A5058826327 @default.
- W3120529348 hasBestOaLocation W31205293481 @default.
- W3120529348 hasConcept C105339364 @default.
- W3120529348 hasConcept C11097651 @default.
- W3120529348 hasConcept C111357193 @default.
- W3120529348 hasConcept C111919701 @default.
- W3120529348 hasConcept C121332964 @default.
- W3120529348 hasConcept C127313418 @default.
- W3120529348 hasConcept C147168706 @default.
- W3120529348 hasConcept C154945302 @default.
- W3120529348 hasConcept C165205528 @default.
- W3120529348 hasConcept C197640229 @default.