Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120561889> ?p ?o ?g. }
- W3120561889 abstract "In this paper, we propose a novel cluster-based Next-Best-View path planning algorithm to simultaneously explore and inspect large-scale unknown environments with multiple Unmanned Aerial Vehicles (UAVs). In the majority of existing informative path-planning methods, a volumetric criterion is used for the exploration of unknown areas, and the presence of surfaces is only taken into account indirectly. Unfortunately, this approach may lead to inaccurate 3D models, with no guarantee of global surface coverage. To perform accurate 3D reconstructions and minimize runtime, we extend our previous online planner based on TSDF (Truncated Signed Distance Function) mapping, to a fleet of UAVs. Sensor configurations to be visited are directly extracted from the map and assigned greedily to the aerial vehicles, in order to maximize the global utility at the fleet level. The performances of the proposed TSGA (TSP-Greedy Allocation) planner and of a nearest neighbor planner have been compared via realistic numerical experiments in two challenging environments (a power plant and the Statue of Liberty) with up to five quadrotor UAVs equipped with stereo cameras." @default.
- W3120561889 created "2021-01-18" @default.
- W3120561889 creator A5016222448 @default.
- W3120561889 creator A5023632377 @default.
- W3120561889 creator A5026787189 @default.
- W3120561889 creator A5055919342 @default.
- W3120561889 creator A5072536302 @default.
- W3120561889 date "2020-10-24" @default.
- W3120561889 modified "2023-10-17" @default.
- W3120561889 title "Next-Best-View planning for surface reconstruction of large-scale 3D environments with multiple UAVs" @default.
- W3120561889 cites W1562003885 @default.
- W3120561889 cites W1573725801 @default.
- W3120561889 cites W1680189815 @default.
- W3120561889 cites W1971086298 @default.
- W3120561889 cites W1975809100 @default.
- W3120561889 cites W2009422376 @default.
- W3120561889 cites W2016285927 @default.
- W3120561889 cites W2017708378 @default.
- W3120561889 cites W2063966660 @default.
- W3120561889 cites W2071888022 @default.
- W3120561889 cites W2089437550 @default.
- W3120561889 cites W2096268286 @default.
- W3120561889 cites W2110762409 @default.
- W3120561889 cites W2133844819 @default.
- W3120561889 cites W2141847241 @default.
- W3120561889 cites W2142924305 @default.
- W3120561889 cites W2153817623 @default.
- W3120561889 cites W2156514784 @default.
- W3120561889 cites W2171330332 @default.
- W3120561889 cites W2229412420 @default.
- W3120561889 cites W2409009991 @default.
- W3120561889 cites W2465948386 @default.
- W3120561889 cites W2482852384 @default.
- W3120561889 cites W2552165419 @default.
- W3120561889 cites W2561839189 @default.
- W3120561889 cites W2566265240 @default.
- W3120561889 cites W2587175508 @default.
- W3120561889 cites W2618092744 @default.
- W3120561889 cites W2736958649 @default.
- W3120561889 cites W2745471877 @default.
- W3120561889 cites W2757107770 @default.
- W3120561889 cites W2789006196 @default.
- W3120561889 cites W2811158378 @default.
- W3120561889 cites W2879404536 @default.
- W3120561889 cites W2883975974 @default.
- W3120561889 cites W2911679274 @default.
- W3120561889 cites W2912372166 @default.
- W3120561889 cites W2973864946 @default.
- W3120561889 cites W3015238808 @default.
- W3120561889 cites W4238591275 @default.
- W3120561889 cites W46171904 @default.
- W3120561889 doi "https://doi.org/10.1109/iros45743.2020.9340897" @default.
- W3120561889 hasPublicationYear "2020" @default.
- W3120561889 type Work @default.
- W3120561889 sameAs 3120561889 @default.
- W3120561889 citedByCount "19" @default.
- W3120561889 countsByYear W31205618892021 @default.
- W3120561889 countsByYear W31205618892022 @default.
- W3120561889 countsByYear W31205618892023 @default.
- W3120561889 crossrefType "proceedings-article" @default.
- W3120561889 hasAuthorship W3120561889A5016222448 @default.
- W3120561889 hasAuthorship W3120561889A5023632377 @default.
- W3120561889 hasAuthorship W3120561889A5026787189 @default.
- W3120561889 hasAuthorship W3120561889A5055919342 @default.
- W3120561889 hasAuthorship W3120561889A5072536302 @default.
- W3120561889 hasBestOaLocation W31205618892 @default.
- W3120561889 hasConcept C121332964 @default.
- W3120561889 hasConcept C1276947 @default.
- W3120561889 hasConcept C13662910 @default.
- W3120561889 hasConcept C14036430 @default.
- W3120561889 hasConcept C154945302 @default.
- W3120561889 hasConcept C199360897 @default.
- W3120561889 hasConcept C205649164 @default.
- W3120561889 hasConcept C2776999362 @default.
- W3120561889 hasConcept C2777735758 @default.
- W3120561889 hasConcept C2778755073 @default.
- W3120561889 hasConcept C2779188883 @default.
- W3120561889 hasConcept C31972630 @default.
- W3120561889 hasConcept C41008148 @default.
- W3120561889 hasConcept C54355233 @default.
- W3120561889 hasConcept C58640448 @default.
- W3120561889 hasConcept C59519942 @default.
- W3120561889 hasConcept C78458016 @default.
- W3120561889 hasConcept C81074085 @default.
- W3120561889 hasConcept C86803240 @default.
- W3120561889 hasConcept C90509273 @default.
- W3120561889 hasConceptScore W3120561889C121332964 @default.
- W3120561889 hasConceptScore W3120561889C1276947 @default.
- W3120561889 hasConceptScore W3120561889C13662910 @default.
- W3120561889 hasConceptScore W3120561889C14036430 @default.
- W3120561889 hasConceptScore W3120561889C154945302 @default.
- W3120561889 hasConceptScore W3120561889C199360897 @default.
- W3120561889 hasConceptScore W3120561889C205649164 @default.
- W3120561889 hasConceptScore W3120561889C2776999362 @default.
- W3120561889 hasConceptScore W3120561889C2777735758 @default.
- W3120561889 hasConceptScore W3120561889C2778755073 @default.
- W3120561889 hasConceptScore W3120561889C2779188883 @default.
- W3120561889 hasConceptScore W3120561889C31972630 @default.
- W3120561889 hasConceptScore W3120561889C41008148 @default.
- W3120561889 hasConceptScore W3120561889C54355233 @default.