Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120608793> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3120608793 endingPage "3034" @default.
- W3120608793 startingPage "3017" @default.
- W3120608793 abstract "Identification and localization of ischemic stroke (IS) lesions is routinely performed to confirm diagnosis, assess stroke severity, predict disability and plan rehabilitation strategies using magnetic resonance imaging (MRI). In basic research, stroke lesion segmentation is necessary to study complex peri-infarction tissue changes. Moreover, final stroke volume is a critical outcome evaluated in clinical and preclinical experiments to determine therapy or intervention success. Manual segmentations are performed but they require a specialized skill set, are prone to inter-observer variation, are not entirely objective and are often not supported by histology. The task is even more challenging when dealing with large multi-center datasets, multiple experimenters or large animal cohorts. On the other hand, current automatized segmentation approaches often lack histological validation, are not entirely user independent, are often based on single parameters, or in the case of complex machine learning methods, require vast training datasets and are prone to a lack of model interpretation. Methods: We induced IS using the middle cerebral artery occlusion model on two rat cohorts. We acquired apparent diffusion coefficient (ADC) and T2-weighted (T2W) images at 24 h and 1-week after IS induction. Subsets of the animals at 24 h and 1-week post IS were evaluated using histology and immunohistochemistry. Using a Gaussian mixture model, we segmented voxel-wise interactions between ADC and T2W parameters at 24 h using one of the rat cohorts. We then used these segmentation results to train a random forest classifier, which we applied to the second rat cohort. The algorithms' stroke segmentations were compared to manual stroke delineations, T2W and ADC thresholding methods and the final stroke segmentation at 1-week. Volume correlations to histology were also performed for every segmentation method. Metrics of success were calculated with respect to the final stroke volume. Finally, the trained random forest classifier was tested on a human dataset with a similar temporal stroke on-set. Manual segmentations, ADC and T2W thresholds were again used to evaluate and perform comparisons with the proposed algorithms' output. Results: In preclinical rat data our framework significantly outperformed commonly applied automatized thresholding approaches and segmented stroke regions similarly to manual delineation. The framework predicted the localization of final stroke regions in 1-week post-stroke MRI with a median Dice similarity coefficient of 0.86, Matthew's correlation coefficient of 0.80 and false positive rate of 0.04. The predicted stroke volumes also strongly correlated with final histological stroke regions (Pearson correlation = 0.88, P < 0.0001). Lastly, the stroke region characteristics identified by our framework in rats also identified stroke lesions in human brains, largely outperforming thresholding approaches in stroke volume prediction (P<0.01). Conclusion: Our findings reveal that the segmentation produced by our proposed framework using 24 h MRI rat data strongly correlated with the final stroke volume, denoting a predictive effect. In addition, we show for the first time that the stroke imaging features can be directly translated between species, allowing identification of acute stroke in humans using the model trained on animal data. This discovery reduces the gap between the clinical and preclinical fields, unveiling a novel approach to directly co-analyze clinical and preclinical data. Such methods can provide further biological insights into human stroke and highlight the differences between species in order to help improve the experimental setups and animal models of the disease." @default.
- W3120608793 created "2021-01-18" @default.
- W3120608793 creator A5000051587 @default.
- W3120608793 creator A5010931202 @default.
- W3120608793 creator A5018788118 @default.
- W3120608793 creator A5025657000 @default.
- W3120608793 creator A5029333060 @default.
- W3120608793 creator A5036371814 @default.
- W3120608793 creator A5038282223 @default.
- W3120608793 creator A5059860173 @default.
- W3120608793 creator A5066583229 @default.
- W3120608793 creator A5070334972 @default.
- W3120608793 creator A5070374515 @default.
- W3120608793 creator A5074575317 @default.
- W3120608793 creator A5078203770 @default.
- W3120608793 creator A5079103085 @default.
- W3120608793 creator A5081741444 @default.
- W3120608793 creator A5084073285 @default.
- W3120608793 date "2021-01-01" @default.
- W3120608793 modified "2023-10-06" @default.
- W3120608793 title "Machine learning identifies stroke features between species" @default.
- W3120608793 cites W1987869189 @default.
- W3120608793 cites W2047679742 @default.
- W3120608793 cites W2112505121 @default.
- W3120608793 cites W2610519592 @default.
- W3120608793 doi "https://doi.org/10.7150/thno.51887" @default.
- W3120608793 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7806470" @default.
- W3120608793 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33456586" @default.
- W3120608793 hasPublicationYear "2021" @default.
- W3120608793 type Work @default.
- W3120608793 sameAs 3120608793 @default.
- W3120608793 citedByCount "11" @default.
- W3120608793 countsByYear W31206087932021 @default.
- W3120608793 countsByYear W31206087932022 @default.
- W3120608793 countsByYear W31206087932023 @default.
- W3120608793 crossrefType "journal-article" @default.
- W3120608793 hasAuthorship W3120608793A5000051587 @default.
- W3120608793 hasAuthorship W3120608793A5010931202 @default.
- W3120608793 hasAuthorship W3120608793A5018788118 @default.
- W3120608793 hasAuthorship W3120608793A5025657000 @default.
- W3120608793 hasAuthorship W3120608793A5029333060 @default.
- W3120608793 hasAuthorship W3120608793A5036371814 @default.
- W3120608793 hasAuthorship W3120608793A5038282223 @default.
- W3120608793 hasAuthorship W3120608793A5059860173 @default.
- W3120608793 hasAuthorship W3120608793A5066583229 @default.
- W3120608793 hasAuthorship W3120608793A5070334972 @default.
- W3120608793 hasAuthorship W3120608793A5070374515 @default.
- W3120608793 hasAuthorship W3120608793A5074575317 @default.
- W3120608793 hasAuthorship W3120608793A5078203770 @default.
- W3120608793 hasAuthorship W3120608793A5079103085 @default.
- W3120608793 hasAuthorship W3120608793A5081741444 @default.
- W3120608793 hasAuthorship W3120608793A5084073285 @default.
- W3120608793 hasBestOaLocation W31206087931 @default.
- W3120608793 hasConcept C121332964 @default.
- W3120608793 hasConcept C154945302 @default.
- W3120608793 hasConcept C15744967 @default.
- W3120608793 hasConcept C169760540 @default.
- W3120608793 hasConcept C2780645631 @default.
- W3120608793 hasConcept C41008148 @default.
- W3120608793 hasConcept C71924100 @default.
- W3120608793 hasConcept C97355855 @default.
- W3120608793 hasConceptScore W3120608793C121332964 @default.
- W3120608793 hasConceptScore W3120608793C154945302 @default.
- W3120608793 hasConceptScore W3120608793C15744967 @default.
- W3120608793 hasConceptScore W3120608793C169760540 @default.
- W3120608793 hasConceptScore W3120608793C2780645631 @default.
- W3120608793 hasConceptScore W3120608793C41008148 @default.
- W3120608793 hasConceptScore W3120608793C71924100 @default.
- W3120608793 hasConceptScore W3120608793C97355855 @default.
- W3120608793 hasIssue "6" @default.
- W3120608793 hasLocation W31206087931 @default.
- W3120608793 hasLocation W31206087932 @default.
- W3120608793 hasOpenAccess W3120608793 @default.
- W3120608793 hasPrimaryLocation W31206087931 @default.
- W3120608793 hasRelatedWork W1506200166 @default.
- W3120608793 hasRelatedWork W1995515455 @default.
- W3120608793 hasRelatedWork W2039318446 @default.
- W3120608793 hasRelatedWork W2049567231 @default.
- W3120608793 hasRelatedWork W2080531066 @default.
- W3120608793 hasRelatedWork W2748952813 @default.
- W3120608793 hasRelatedWork W2899084033 @default.
- W3120608793 hasRelatedWork W3032375762 @default.
- W3120608793 hasRelatedWork W3107474891 @default.
- W3120608793 hasRelatedWork W3108674512 @default.
- W3120608793 hasVolume "11" @default.
- W3120608793 isParatext "false" @default.
- W3120608793 isRetracted "false" @default.
- W3120608793 magId "3120608793" @default.
- W3120608793 workType "article" @default.