Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120637990> ?p ?o ?g. }
- W3120637990 endingPage "187" @default.
- W3120637990 startingPage "176" @default.
- W3120637990 abstract "Extensive spectroscopic studies of molecular electrocatalysts have enabled several design approaches for the creation of new functional electrolysis systems for carbon dioxide reduction. Reaction pathways can be manipulated by controlling a number of factors affecting the chemical environment through careful selection of Lewis or Brønsted acids or synthetic modification that controls metal–metal interactions, including noncovalent interactions like hydrogen bonding. IR spectroelectrochemistry has proved to be a valuable tool for observing chemical characteristics of electrocatalysts at catalytically relevant potentials and understanding the intermediates between the catalyst precursor and active catalyst states. Anthropogenic CO2 emissions, primarily from the combustion of fossil fuels, are driving climate change at an alarming rate. Our current dependence on carbon-based fuels has motivated research interest in the capture and catalytic reduction of carbon dioxide back to liquid fuels. Electrochemical reduction of carbon dioxide has been intensely researched over the past decade. Here, some of the important contributions made to this field over the past decade using the Group VII transition metal bipyridine catalysts are reviewed. Strategies to further our mechanistic understanding of the electrocatalytic reduction of CO2 to CO are described. Anthropogenic CO2 emissions, primarily from the combustion of fossil fuels, are driving climate change at an alarming rate. Our current dependence on carbon-based fuels has motivated research interest in the capture and catalytic reduction of carbon dioxide back to liquid fuels. Electrochemical reduction of carbon dioxide has been intensely researched over the past decade. Here, some of the important contributions made to this field over the past decade using the Group VII transition metal bipyridine catalysts are reviewed. Strategies to further our mechanistic understanding of the electrocatalytic reduction of CO2 to CO are described. a typical experiment uses a reference electrode (a standard potential), a working electrode (where the potential is applied), and a counter electrode (closes the current circuit). This electrochemical technique measures the current in the electrochemical cell as a function of the applied potential at the working electrode. refers to the atomic orbital that occupies the z-axis of an metal atom. a molecule that can change and increase the rate of an electrochemical reaction without being consumed in the reaction. a chemical reaction involving the transfer of electrons from the electrode to the surface. the percentage of the charge transferred in a system that facilitates a specific reaction. a linear free-energy relationship for modeling the electronic effect of substituents on aromatic systems. IR spectroscopy of a specially designed electrochemical cell, which provides qualitative and quantitative information on the processes occurring under applied potential. the potential difference between the standard potential and the potential where the redox event is observed, or the ‘extra’ potential needed to drive a redox reaction. a fuel synthesized from small ubiquitous molecules (i.e., water, carbon dioxide, nitrogen) using solar energy. a technique for observing chemical reaction kinetics on the millisecond timescale. a nonlinear spectroscopic technique used to analyze surfaces. This typically involves two laser incident sources, which generate an output that is the sum of the two incident light sources. a plot of the Tafel equation, which relates the rate of an electrochemical reaction to the overpotential applied to achieve that rate. a measure of the rate of a catalyst and calculated as the number of chemical conversions of a substrate per second facilitated by the catalyst. This is related to the TON, which is the maximum number of chemical conversions the catalyst will perform of the desired chemical conversion." @default.
- W3120637990 created "2021-01-18" @default.
- W3120637990 creator A5000007576 @default.
- W3120637990 creator A5012348162 @default.
- W3120637990 creator A5073906304 @default.
- W3120637990 date "2021-03-01" @default.
- W3120637990 modified "2023-10-17" @default.
- W3120637990 title "Electrochemical Reduction of CO2 Using Group VII Metal Catalysts" @default.
- W3120637990 cites W1179385413 @default.
- W3120637990 cites W1908080472 @default.
- W3120637990 cites W1966729480 @default.
- W3120637990 cites W1980393006 @default.
- W3120637990 cites W1983589290 @default.
- W3120637990 cites W1988937707 @default.
- W3120637990 cites W1991470376 @default.
- W3120637990 cites W1997163291 @default.
- W3120637990 cites W2005275236 @default.
- W3120637990 cites W2007484203 @default.
- W3120637990 cites W2008205705 @default.
- W3120637990 cites W2009390387 @default.
- W3120637990 cites W2010252868 @default.
- W3120637990 cites W2011275736 @default.
- W3120637990 cites W2024382446 @default.
- W3120637990 cites W2034759647 @default.
- W3120637990 cites W2036452223 @default.
- W3120637990 cites W2048600325 @default.
- W3120637990 cites W2051857963 @default.
- W3120637990 cites W2062713446 @default.
- W3120637990 cites W2063404506 @default.
- W3120637990 cites W2074292354 @default.
- W3120637990 cites W2078289736 @default.
- W3120637990 cites W2088671627 @default.
- W3120637990 cites W2095706733 @default.
- W3120637990 cites W2126197024 @default.
- W3120637990 cites W2137818170 @default.
- W3120637990 cites W2138972226 @default.
- W3120637990 cites W2139978094 @default.
- W3120637990 cites W2151357763 @default.
- W3120637990 cites W2161737755 @default.
- W3120637990 cites W2232701964 @default.
- W3120637990 cites W2253695557 @default.
- W3120637990 cites W2258486975 @default.
- W3120637990 cites W2290595668 @default.
- W3120637990 cites W2315313870 @default.
- W3120637990 cites W2315751069 @default.
- W3120637990 cites W2320077277 @default.
- W3120637990 cites W2320625878 @default.
- W3120637990 cites W2331863767 @default.
- W3120637990 cites W2333481394 @default.
- W3120637990 cites W2339493211 @default.
- W3120637990 cites W2345075274 @default.
- W3120637990 cites W2464222665 @default.
- W3120637990 cites W2471973321 @default.
- W3120637990 cites W2511401378 @default.
- W3120637990 cites W2539744650 @default.
- W3120637990 cites W2555361019 @default.
- W3120637990 cites W2581587902 @default.
- W3120637990 cites W2591654700 @default.
- W3120637990 cites W2604933674 @default.
- W3120637990 cites W2747030391 @default.
- W3120637990 cites W2747468935 @default.
- W3120637990 cites W2755823159 @default.
- W3120637990 cites W2785059551 @default.
- W3120637990 cites W2797062140 @default.
- W3120637990 cites W2883288462 @default.
- W3120637990 cites W2883626023 @default.
- W3120637990 cites W2890186464 @default.
- W3120637990 cites W2896363710 @default.
- W3120637990 cites W2897749533 @default.
- W3120637990 cites W2901325402 @default.
- W3120637990 cites W2905061093 @default.
- W3120637990 cites W2912288803 @default.
- W3120637990 cites W2913853938 @default.
- W3120637990 cites W2914999410 @default.
- W3120637990 cites W2922092435 @default.
- W3120637990 cites W2922405197 @default.
- W3120637990 cites W2929880305 @default.
- W3120637990 cites W2940101179 @default.
- W3120637990 cites W2944224761 @default.
- W3120637990 cites W2946606827 @default.
- W3120637990 cites W2952744645 @default.
- W3120637990 cites W2971611406 @default.
- W3120637990 cites W2974189876 @default.
- W3120637990 cites W2978322469 @default.
- W3120637990 cites W2993490411 @default.
- W3120637990 cites W2994850312 @default.
- W3120637990 cites W2996797507 @default.
- W3120637990 cites W2999050709 @default.
- W3120637990 cites W3002790377 @default.
- W3120637990 cites W3004537788 @default.
- W3120637990 cites W3010735497 @default.
- W3120637990 cites W3041134643 @default.
- W3120637990 cites W3091544316 @default.
- W3120637990 cites W3096547422 @default.
- W3120637990 doi "https://doi.org/10.1016/j.trechm.2020.12.009" @default.
- W3120637990 hasPublicationYear "2021" @default.
- W3120637990 type Work @default.
- W3120637990 sameAs 3120637990 @default.